精英家教网 > 初中数学 > 题目详情
12.∑表示数学中的求和符号,主要用于求多个数的和,∑下面的小字,i=1表示从1开始求和;上面的小字,如n表示求和到n为止.即$\sum_{i=1}^{n}$xi=x1+x2+x3+…+xn.则$\sum_{i=1}^{n}$(i2-i)表示(  )
A.n2-1B.12+22+32+…+i2-i
C.12+22+32+…+n2-1D.12+22+32+…+n2-(1+2+3+…+n )

分析 原式利用题中的新定义判断即可.

解答 解:$\sum_{i=1}^{n}$(i2-i)表示12-1+22-2+32-3+…+n2-n=12+22+32+…+n2-(1+2+3+…+n),
故选:D.

点评 此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.如图,已知△ABC的顶点A,B,C的坐标分别是A(-1,-1),B(-4,-3),C(-4,-1)
(1)作出△ABC关于原点O中心对称的图形△A1B1C1,画出△A1B1C1
(2)将△ABC绕原点O按顺时针方向旋转90°后得到△A2B2C2,画出△A2B2C2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.某班“数学兴趣小组”对函数y=x2-2|x|的图象和性质进行了探究,探究过程如下.
(1)自变量x的取值范围是全体实数,x与y的几组对应值如下:
x-3-$\frac{5}{2}$-2-1012$\frac{5}{2}$3
y3$\frac{5}{4}$m-10-10$\frac{5}{4}$3
其中,m=0.
(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请你画出该函数图象的另一部分.
(3)观察函数图象,写出一条性质.函数y=x2-2|x|的图象关于y轴对称
(4)进一步探究函数图象发现:
①方程x2-2|x|=0有3个实数根;
②关于x的方程x2-2|x|=a有4个实数根时,a的取值范围是-1<a<0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,△ABC中,AB=AC,∠BAC=45°,BC=2,D是线段BC上的一个动点,点D是关于直线AB、AC的对称点分别为M、N,则线段MN长的最小值是3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.计算:
(1)$\sqrt{12}$-9$\sqrt{\frac{1}{3}}$+$\sqrt{75}$
(2)($\sqrt{2}$-$\sqrt{3}$)2+2$\sqrt{\frac{1}{3}}$×3$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.已知二次函数y=ax2+bx+c的图象如图所示,则下列6个代数式:ab、ac、a+b+c、2a+b、2a-b中,其值为正的式子的个数是(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.计算:
( 1)(a-3b-2-2•(ab3-3
(2)$\frac{{a}^{2}-ab}{{a}^{2}}$÷($\frac{a}{b}$-$\frac{b}{a}$)
(3)(a-3-$\frac{7}{a+3})÷\frac{a-4}{2a+6}$÷$\frac{a-4}{2a+6}$
(4)($\sqrt{3}$-$\sqrt{2}$)0-(-$\frac{1}{2}$)2+2-2-(-1)3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图所示,在Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,若AC=6,BC=8,CD=3.
(1)求DE的长;
(2)求△EDB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,已知一次函数y=-2x+3的图象与x轴交于点A,与反比例函数y=-$\frac{5}{x}$的图象交于B,C两点,点P是线段AB上的一个动点.
(1)当x取何值时,反比例函数的值小于一次函数的值;
(2)过点P作x轴的平行线与反比例函数y=-$\frac{5}{x}$的图象相交于点D,求△PAD的面积的最大值;
(3)在反比例函数y=-$\frac{5}{x}$的图象上找点E,使∠BCE为直角,直接写出点E的坐标.

查看答案和解析>>

同步练习册答案