精英家教网 > 初中数学 > 题目详情
正方形ABCD中,E为AD上的一点(不与A、D点重合),AD=nAE,BE的垂直平分线分别交AB、CD于F、G两点,垂足为H.
(1)如图1,当n=2时,则= _________ 
(2)如图1,当n=2时,求的值;
(3)延长FG交BC的延长线于M(如图2),直接填空:当n= _________ 时,
(1)    (2)     (3)

试题分析:(1)如图1,过点H作HM⊥AD于M.
∵BE的垂直平分线分别交AB、CD于F、G两点,HM⊥AD,
∴MH是△ABE的中位线,
∴AM=ME;
∵AD=2AE,
∴AM=DM,
==(平行线分线段成比例定理),
故答案为:
(2)如图2,连接EG、BG.
∵ABCD是正方形,
∴AB=BC=CD=AD,∠A=∠D=∠C=90°.
设AB=BC=CD=AD=4x,CG=y.
当n=2时,AD=2AE,
∴AE=ED=2x;
在Rt△EDG中,EG2=ED2+DG2(勾股定理),
即EG2=(2x)2+(4x﹣y)2
在Rt△BCG中,BG2=BC2+CG2
即BG2=(4x)2+y2
∵FG垂直平分BE,
∴EG=BG.
∴(2x)2+(4x﹣y)2=(4x)2+y2
得y=
∴DG=DC﹣CG=
∵FH⊥BE,
∴∠BHF=90°
可得Rt△BHF∽Rt△BAE,可得BF=

(3)n=



点评:本题综合考查了正方形的性质、相似三角形的判定与性质以及勾股定理等知识点.要充分利用好正方形的性质,通过已知和所求的条件构建出相似三角形来求解是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,AB=AC=2,∠BAC=20°.动点P,Q分别在直线BC上运动,且始终保持∠PAQ=100°.设BP=x,CQ=y,则y与x之间的函数关系用图象大致可以表示为(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(﹣4,0),点B的坐标是(0,b)(b>0).P是直线AB上的一个动点,作PC⊥x轴,垂足为C.记点P关于y轴的对称点为P´(点P´不在y轴上),连接PP´,P´A,P´C.设点P的横坐标为a.
(1)当b=3时,
①求直线AB的解析式;
②若点P′的坐标是(﹣1,m),求m的值;
(2)若点P在第一象限,记直线AB与P´C的交点为D.当P´D:DC=1:3时,求a的值;
(3)是否同时存在a,b,使△P´CA为等腰直角三角形?若存在,请求出所有满足要求的a,b的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,中,,过点,点分别是射线、线段上的动点,且,过点交线段于点,联接,设面积为

(1)用的代数式表示
(2)求的函数关系式,并写出定义域;
(3)联接,若相似,求的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在ABCD中,AE∶EB=1∶2,若,则等于(      )
A. 54B. 18C. 12D. 24

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将一个平面图形分成面积相等的两部分的直线叫做该平面图形的“面线”,“面线”被这个平面图形截得的线段叫做该图形的“面径”,例如圆的直径就是它的“面径”.已知等边三角形的边长为2,则它的“面径”长m的范围是          

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,∠A=90°,AB=2cm,AC=4cm.动点P从点A出发,沿AB方向以1cm/s的速度向点B运动,动点Q从点B同时出发,沿BA方向以1cm/s的速度向点A运动.当点P到达点B时,P,Q两点同时停止运动,以AP为一边向上作正方形APDE,过点Q作QF∥BC,交AC于点F.设点P的运动时间为ts,正方形和梯形重合部分的面积为Scm2
(1)当t= _________ s时,点P与点Q重合;
(2)当t= _________ s时,点D在QF上;
(3)当点P在Q,B两点之间(不包括Q,B两点)时,求S与t之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,AB=8cm,BC=16cm,点P从点A开始沿边AB向点B以2cm/s的速度移动,点Q从点B开始沿边BC向点C以4cm/s的速度移动,如果点P、Q分别从点A、B同时出发,经几秒钟△PBQ与△ABC相似?试说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中,D为AC边上的中点,AE∥BC,ED交AB于G,交BC延长线于F.若BG:GA=3:1,BC=10,则AE的长为 _________ 

查看答案和解析>>

同步练习册答案