精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,AB=AC=2,∠BAC=20°.动点P,Q分别在直线BC上运动,且始终保持∠PAQ=100°.设BP=x,CQ=y,则y与x之间的函数关系用图象大致可以表示为(  )
A

试题分析:根据△ABC是等腰三角形,∠BAC=20°,则∠ABC=∠ACB=80°.根据三角形的外角等于不相邻的两内角的和,得到∠QAC=∠P,得到△APB∽△QAC,根据相似三角形的对应边的比相等,即可求得x与y的函数关系式,即可进行判断.
∵△ABC中,AB=AC,∠BAC=20°
∴∠ACB=80°
又∵∠PAQ=∠PAB+∠BAC+∠CAQ=100°
∴∠PAB+∠CAQ=80°
△ABC中:∠ACB=∠CAQ+∠AQC=80°
∴∠AQC=∠PAB
同理:∠P=∠CAQ
∴△APB∽△QAC

则函数解析式是
故选A.
点评:注意本题不一定要通过求解析式来解决.能够根据角度的关系,联想到△APB∽△QAC是解决本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在正方形ABCD中,E是BC上的一点,连接AE,作BF⊥AE,垂足为H,交CD于F,作CG∥AE,交BF于G.求证:
(1)CG=BH;
(2)FC2=BF•GF;
(3)=

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC∽△ADE,AB="30" cm,BD="18" cm,BC="20" cm,∠BAC=75°,∠ABC=40°.

(1)求∠AED的度数.
(2)求DE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列命题正确的是(    )
A.所有等腰三角形都相似B.所有的矩形都相似
C.所有的菱形一定相似D.有一对锐角相等的直角三角形一定相似

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题


【问题提出】我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.
【问题解决】如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小.

解:由图可知:

∵a≠b,∴>0.
∴M-N>0.∴M>N.
【类比应用】(1)已知:多项式M =2a2-a+1 ,N =a2-2a .
试比较M与N的大小.
(2)已知:如图2,锐角△ABC (其中BC为a ,AC为 b,
AB为c)三边满足a <b < c ,现将△ABC 补成长方形,
使得△ABC的两个顶点为长方形的两个端点,第三个顶点落
在长方形的这一边的对边上。
 
①这样的长方形可以画     个;
②所画的长方形中哪个周长最小?为什么?
【拓展延伸】 已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边满足a <b < c ,画其BC边上的内接正方形EFGH , 使E、F两点在边BC上,G、H分别在边AC、AB上,同样还可画AC、AB边上的内接正方形,问哪条边上的内接正方形面积最大?为什么?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图分别在的边上,要使△AED∽△ABC,应添加条件是            ;(只写出一种即可).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列阴影三角形分别在小正方形组成的网格中,则与左图中的三角形相似的是(    )

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

正方形ABCD中,E为AD上的一点(不与A、D点重合),AD=nAE,BE的垂直平分线分别交AB、CD于F、G两点,垂足为H.
(1)如图1,当n=2时,则= _________ 
(2)如图1,当n=2时,求的值;
(3)延长FG交BC的延长线于M(如图2),直接填空:当n= _________ 时,

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,有一块△ABC材料,BC=10,高AD=6,把它加工成一个矩形零件,使矩形的一边GH在BC上,其余两个顶点E,F分别在AB,AC上,那么矩形EFHG的周长l的取值范围是(  )
A.0<l<20B.6<l<10C.12<l<20D.12<l<26

查看答案和解析>>

同步练习册答案