精英家教网 > 初中数学 > 题目详情

如图,矩形ABCD中,AB=1,若直角三角形ABC绕AB旋转所得圆锥的侧面积和矩形ABCD绕AB旋转所得圆柱的侧面积相等,求BC的长.

解:∵S圆锥侧=π•BC•AC,S圆柱侧=2π•BC•CD,
又∵S圆锥侧=S圆柱侧
∴π•BC•AC=2π•BC•CD,
∴AC=2CD,
∵ABCD为矩形,
∴CD=AB=1,∴AC=2CD=2,
在Rt△ABC中,BC=
∴BC=
分析:圆柱侧面积=底面周长×高,圆锥的侧面积=底面周长×母线长÷2.让这两个面积相等即可得到AC和CD之间的关系,利用勾股定理即可求得BC长.
点评:本题利用了扇形的面积公式,矩形的性质,勾股定理求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AB=6,BC=8,M是BC的中点,DE⊥AM,E是垂足,则△ABM的面积为
 
;△ADE的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AD=a,AB=b,要使BC边上至少存在一点P,使△ABP、△APD、△CDP两两相似,则a、b间的关系式一定满足(  )
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中数学 来源: 题型:

7、如图,矩形ABCD中,AE⊥BD,垂足为E,∠DAE=2∠BAE,则∠CAE=
30
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2008•怀柔区二模)已知如图,矩形ABCD中,AB=3cm,BC=4cm,E是边AD上一点,且BE=ED,P是对角线上任意一点,PF⊥BE,PG⊥AD,垂足分别为F、G.则PF+PG的长为
3
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2002•西藏)已知:如图,矩形ABCD中,E、F是AB边上两点,且AF=BE,连结DE、CF得到梯形EFCD.
求证:梯形EFCD是等腰梯形.

查看答案和解析>>

同步练习册答案