精英家教网 > 初中数学 > 题目详情
二次函数的图象如图所示,则这四个式子中,值为正数的有(   )
A.4个B.3个C.2个D.1个
B
解:由抛物线开口向上可得,抛物线与轴的交点在负半轴可得,抛物线的对称轴可得,则
因为抛物线与轴有两个交点坐标,所以
又抛物线的对称轴,可得
由图可知,当时,
所以结果为正数的式子有3个,故选B。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2+bx+c与y轴交于点C,与x轴相交于A,B两点,点A的坐标为(2,0),点C的坐标为(0,―4).

(1)求抛物线的解析式;
(2)点Q是线段OB上的动点,过点Q作QE//BC,交AC于点E,连接CQ,设OQ=m,当△CQE的面积最大时,求m的值,并写出点Q的坐标.
(3)若平行于x轴的动直线,与该抛物线交于点P,与直线BC交于点F,D的坐标为(-2,0),则是否存在这样的直线l,使OD=DF?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).

(1)求抛物线的解析式;
(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;
(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,点的坐标分别为
(1)请在图中画出,使得关于点成中心对称;
(2)若一个二次函数的图象经过(1)中的三个顶点,求此二次函数的关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,有长为24m的篱笆,一面利用墙(墙的最大可用长度a为10m),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为xm,面积为Sm2

(1)求S与x的函数关系式;
(2)如果要围成面积为45m2的花圃,AB的长是多少米?
(3)能围成面积比45 m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

k为任何实数,则抛物线y=2(x+k)2-k的顶点在( )上
A.直线y=x上,B.直线y=-xC.x轴D.y轴

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知抛物线的对称轴为直线,点AB均在抛物线上,且ABx轴平行,其中点A的坐标为(0,3),则点B的坐标为( )

A(2,3)  B(3,2)   C(3,3)   D.(4,3)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如果抛物线y=x2-6x+c-2的顶点到x轴的距离是3,那么c的值等于(   )
A  8         B  14        C  8或14       D  -8或-14

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知抛物线与x轴相交时两交点间的线段长为4,则m的值是    

查看答案和解析>>

同步练习册答案