精英家教网 > 初中数学 > 题目详情
如图.∠BAC=90゜,AB=AC,D为BC上一点,CE⊥AD于E,BF⊥AD于,若CE=7,
BF=4,求EF的长.
分析:根据同角的余角相等求出∠1=∠3,然后利用“角角边”证明△ABF和△CAE全等,根据全等三角形对应边相等可得AF=CE,AE=BF,然后根据EF=AF-AE代入数据进行计算即可得解.
解答:解:如图,∵∠BAC=90°,
∴∠1+∠2=90°,
∵CE⊥AD,
∴∠AEC=90°,∠2+∠3=90°,
∴∠1=∠3,
∵BF⊥AD,
∴∠F=90°,
∴∠AEC=∠F=90°,
在△ABF和△CAE中,
∠1=∠3
∠AEC=∠F=90°
AB=AC

∴△ABF≌△CAE(AAS),
∴AF=CE=7,AE=BF=4,
∴EF=AF-AE=7-4=3,
即EF=3.
点评:本题考查了全等三角形的判定与性质,同角的余角相等的性质,利用阿拉伯数字加弧线表示角更形象直观.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,∠BAC=90°,AD⊥BC,△ABE,△ACF都是等边三角形,则S△ABE:S△ACF等于(  )
A、AB:ACB、AD2:DC2C、BD2:DC2D、AC2:AB2

查看答案和解析>>

科目:初中数学 来源: 题型:

6、如图,∠BAC=90°,AD⊥BC,则图中互余的角有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,∠BAC=90°,AC=AB,直线l与以AB为直径的圆相切于点B,点E是圆上异于A、B的任意一点.精英家教网直线AE与l相交于点D.
(1)如果AD=10,BD=6,求DE的长;
(2)连接CE,过E作CE的垂线交直线AB于F.当点E在什么位置时,相应的F位于线段AB上、位于BA的延长线上、位于AB的延长线上(写出结果,不要求证明).无论点E如何变化,总有BD=BF.请你就上述三种情况任选一种说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(任选做一题)
(1)如图,在平行四边形ABCD中,E是AD上的一点.求证:AE•OB=OE•CB;
精英家教网
(2)已知如图,∠BAC=90°,AD⊥BC,AE=EC,ED延长线交AB的延长线于点F.
求证:①△DBF∽△ADF;②
AB
AC
=
DF
AF

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠BAC=90°,∠C=30°,AD⊥BC于D,DE⊥AB于E,BE=1,BC=
8
8

查看答案和解析>>

同步练习册答案