精英家教网 > 初中数学 > 题目详情
下列说法中,错误的是(  )
A、一组对边平行且相等的四边形是平行四边形B、两条对角线互相垂直且平分的四边形是菱形C、四个角都相等的四边形是矩形D、邻边都相等的四边形是正方形
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

下列命题中,真命题是(  )
A、两对角线相等的四边形是矩形B、两对角线互相平分的四边形是平行四边形C、两对角线互相垂直的四边形是菱形D、两对角线相等的四边形是等腰梯形

查看答案和解析>>

科目:初中数学 来源: 题型:

AD,AE分别是△ABC的高和角平分线,且∠B=76°,∠C=36°,则∠DAE的度数为(  )
A、20°B、18°C、38°D、40°

查看答案和解析>>

科目:初中数学 来源: 题型:

甲乙两商场商品价格相同,但促销方式不同,甲场一次性购物超过100元,超过部分按八折优惠;乙商场一次性购物超过50元,超过的部分九折优惠;如果你去购物,应选怎样的方式?

查看答案和解析>>

科目:初中数学 来源: 题型:

为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7m3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m3的部分每立方米收费1.5元,并加收0.4元的城市污水处理费,设某户每月用水量为x(m3),应交水费为y(元).
(1)写出用水未超过7m3时,y与x之间的函数关系式;
(2)写出用水多于7m3时,y与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

下列各组图形中,对角线互相平分且垂直的是(  )
A、平行四边形与菱形B、矩形与正方形C、菱形与矩形D、菱形与正方形

查看答案和解析>>

科目:初中数学 来源: 题型:

矩形是平行四边形.
 
(判断对错)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,∠1、∠2、∠3、∠4 是五边形ABCDE的4个外角,若∠EAB=120°,则∠1+∠2+∠3+∠4等于(  )
A、540°B、360°C、300°D、240°

查看答案和解析>>

科目:初中数学 来源: 题型:

问题情境:数学活动课上,老师提出了一个问题:如图①,已知在△ABC中,∠ACB=90°,AC=BC,点D为直线AB上的一动点(点D不与点A,B重合)连接CD,以点C为旋转中心,将CD逆时针旋转90°得到CE,连接BE,试探索线段AB,BD,BE之间的数量关系.
小组展示:“希望”小组展示如下:解:线段AB,BD,BE之间的数量关系是AB=BE+BD.
证明:如图①∵∠ACB=90°,∠DCE=90°
∴∠ACB=∠DCE
∴∠ACB=∠DCB=∠DCE-∠DCB
即∠ACD=∠BCE
∵CE是由CD旋转得到.
∴CE=CD
则在△ACD和△BCE中,
AC=BC
∠ACD=∠BCE
CD=CE

∴△ACD≌△BCE(依据1)
∴AD=BE(依据2)
∵AB=AD+BD
∴AB=BE+BD
反思与交流:
(1)上述证明过程中的“依据1”和“依据2”分别是指:
依据1:
 

依据2:
 

(2)“腾飞”小组提出了与“希望”小组不同的意见,认为还有两种情况需要考虑,你根据他们的分类情况直接写出发现的结论:
①如图②,当点D在线段AB的延长线上时,三条点段AB,BD,BE之间的数量关系是
 

②如图③,当点D在线段BA的延长线上时,三条线段AB,BD,BE之间的数量关系是
 

(3)如图④,当点D在线段BA的延长线上时,若CD=4,线段DE的中点为F,连接FB,求FB的长度.

查看答案和解析>>

同步练习册答案