【题目】如图四边形ABCD是菱形,且∠ABC=60,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM,则下列五个结论中正确的是( )
①若菱形ABCD的边长为1,则AM+CM的最小值1;
②△AMB≌△ENB;
③S四边形AMBE=S四边形ADCM;
④连接AN,则AN⊥BE;
⑤当AM+BM+CM的最小值为2 时,菱形ABCD的边长为2.
A.①②③
B.②④⑤
C.①②⑤
D.②③⑤
【答案】C
【解析】解:①连接AC,交BD于点O,
∵四边形ABCD是菱形,
∴AB=BC,BD⊥AC,AO=BO
∴点A,点C关于直线BD对称,
∴M点与O点重合时AM+CM的值最小为AC的值
∵∠ABC=60,
∴△ABC是等边三角形,
∴AB=AC,
∵AB=1,
∴AC=1,
即AM+CM的值最小为1,故本答案正确.
②∵△ABE是等边三角形,
∴BA=BE,∠ABE=60°.
∵∠MBN=60°,
∴∠MBN﹣∠ABN=∠ABE﹣∠ABN.
即∠MBA=∠NBE.
又∵MB=NB,
∴△AMB≌△ENB(SAS),故本答案正确.
③∵S△ABE+S△ABM=S四边形AMBE
S△ACD+S△AMC=S四边形ADCM , 且S△AMB≠S△AMC ,
∴S△ABE+S△ABM≠S△ACD+S△AMC ,
∴S四边形AMBE≠S四边形ADCM , 故本答案错误.
④假设AN⊥BE,且AE=AB,
∴AN是BE的垂直平分线,
∴EN=BN=BM=MN,
∴M点与O点重合,
∵条件没有确定M点与O点重合,故本答案错误.
⑤如图,连接MN,由(1)知,△AMB≌△ENB,
∴AM=EN,
∵∠MBN=60°,MB=NB,
∴△BMN是等边三角形.
∴BM=MN.
∴AM+BM+CM=EN+MN+CM.(10分)
根据“两点之间线段最短”,得EN+MN+CM=EC最短
∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长.
过E点作EF⊥BC交CB的延长线于F,
∴∠EBF=180°﹣120°=60°,设菱形的边长为x,
∴BF= x,EF= x,在Rt△EFC中,
∵EF2+FC2=EC2 ,
∴ + = ,解得x=2,故本答案正确.
综上所述,正确的答案是:①②⑤,
故选C.
(1)连接AC,根据“两点之间线段最短”,可得,当M点落在BD的中点时,AM+CM的值最小;(2)由题意得MB=NB,∠ABN=30°,所以∠EBN=30°,容易证出△AMB≌△ENB;(3)连接AC,可以得到S△ABE=S△ADC , S△AMB≠S△AMC , 从而可以得出结论.(4)假设AN⊥BE,根据等腰三角形的性质及垂直平分线的性质得出EN=BN,从而得出结论.(5)根据“两点之间线段最短”,当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长,(如图)作辅助线,过E点作EF⊥BC交CB的延长线于F,由题意求出∠EBF=60°,设菱形的边长为x,在Rt△EFC中,根据勾股定理求得菱形的边长.
科目:初中数学 来源: 题型:
【题目】八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):
甲 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲队成绩的中位数是分,乙队成绩的众数是分;
(2)计算乙队的平均成绩和方差;
(3)已知甲队成绩的方差是1.4分2 , 则成绩较为整齐的是队.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年6月份,我市某果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆将这批水果全部运往深圳,已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨;
(1)该果农安排甲、乙两种货车时有几种方案?请你帮助设计出来;
(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,则该果农应选择哪种方案使运费最少,最少运费是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:
根据以上信息,整理分析数据如下:
平均成绩/环 | 中位数/环 | 众数/环 | 方差 | |
甲 | a | 7 | 7 | 1.2 |
乙 | 7 | b | 8 | c |
(1)写出表格中a,b,c的值;
(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;
(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,
①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.
②若点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,求a与b满足的数量关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E是正方形ABCD的边BC延长线上一点,连结DE,过顶点B作BF⊥DE,垂足为F,BF分别交AC于H,交BC于G.
(1)求证:BG=DE;
(2)若点G为CD的中点,求 的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com