精英家教网 > 初中数学 > 题目详情

如图,△ABC是等边三角形,E是AC上一点,D是BC延长线上一点,连接BE,DE,若∠ABE=40°,BE=DE,求∠CED的度数.

解:∵△ABC是等边三角形,
∴∠ABC=∠ACB=60°,
∵∠ABE=40°,
∴∠EBC=∠ABC-∠ABE=60°-40°=20°,
∵BE=DE,
∴∠D=∠EBC=20°,
∴∠CED=∠ACB-∠D=40°.
分析:由三角形ABC为等边三角形,利用等边三角形的性质得到三个内角为60°,根据∠ABE=40°,求出∠EBC的度数,根据BE=DE,利用等边对等角得到∠EBC=∠D,求出∠D的度数,利用外角性质即可求出∠CED的度数.
点评:此题考查了等边三角形的性质,以及外角性质,熟练掌握等边三角形的性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,⊙O过点B,C,且与BA,CA的延长线分别交于点D,E,弦DF精英家教网∥AC,EF的延长线交BC的延长线于点G.
(1)求证:△BEF是等边三角形;
(2)若BA=4,CG=2,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图,△ABC是等边三角形,过AB边上一点D作BC的平行线交AC于E,则△ADE的三个内角
等于60度.(填“都”、“不都”或“都不”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC是等边三角形,AB=4cm,则BC边上的高AD等于
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,D为BC边上的点,∠BAD=15°,将△ABD绕点A点逆时针方向旋转后到达△ACE的位置,那么旋转角的度数是
60°
60°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连结BD并延长与CE交于点E.
(1)直接写出∠ECF的度数等于
60
60
°;
(2)求证:△ABD∽△CED;
(3)若AB=12,AD=2CD,求BE的长.

查看答案和解析>>

同步练习册答案