精英家教网 > 初中数学 > 题目详情

如图,在梯形ABCD中,AB∥DC,∠ADC+∠BCD=90°,且DC=2AB,分别以DA、BC、DC为边向梯形外作正方形,其面积分别为S1、S2、S3,则S1、S2、S3之间数量的关系是


  1. A.
    S1+S2=S3
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
D
分析:过点A作AE∥BC交CD于点E,得到平行四边形ABCE和Rt△ADE,根据平行四边形的性质和勾股定理,不难证明三个正方形的边长对应等于所得直角三角形的边.
解答:解:过点A作AE∥BC交CD于点E,
∵AB∥DC,
∴四边形AECB是平行四边形,
∴AB=CE,BC=AE,∠BCD=∠AED,
∵∠ADC+∠BCD=90°,DC=2AB,
∴AB=DE,∠ADC+∠AED=90°,
∴∠DAE=90°,那么AD2+AE2=DE2
∵S1=AD2,S=AB2=DE2,S2=BC2=AE2
∴S=S1+S2
又∵DC=2AB,
∴S=S3
∴S1+S2=S3
故选D.
点评:本题考查了勾股定理,解题的关键在于通过作辅助线把梯形的问题转换为平行四边形和直角三角形的问题,然后把三个正方形的边长整理到一个三角形中进行解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,在梯形ABCD中,AB∥CD,对角线AC、BD交于点O,则S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线BD⊥DC.
(1)求证:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,则梯形面积S梯形ABCD=
38.4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD为直径的半圆O切AB于点E,这个梯形的面积为21cm2,周长为20cm,那么半圆O的半径为(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步练习册答案