证明:∵AB=AC,∴∠ABC=∠ACB,
∵BE=CF,BD=CE,
∴△DBE≌△CEF,
∴DE=EF,
∴△DEF是等腰三角形;
(2)∵△DBE≌△CEF,
∴∠BDE=∠CEF,∠BED=∠CFE
∵∠A+∠B+∠C=180°,
∴∠BDE+∠BED=180°-∠ABC=110°
∴∠CEF+∠BED=110°
∴∠DEF=180°-(∠CEF+∠BED)=70°
即∠DEF=70°
分析:(1)由AB=AC,∠ABC=∠ACB,BE=CF,BD=CE.利用边角边定理证明△DBE≌△CEF,然后即可求证△DEF是等腰三角形.
(2)根据∠A=40°可求出∠ABC=∠ACB=70°根据△DBE≌△CEF,利用三角形内角和定理即可求出∠DEF的度数.
点评:此题主要考查学生对等腰三角形的判定与性质的理解和掌握,此题主要应用了三角形内角和定理和平角是180°,因此有一定的难度,属于中档题.