精英家教网 > 初中数学 > 题目详情

如图,△ABC是等边三角形,BD是AC边上的高,延长BC至E,使CE=CD.连接DE.
(1)∠E等于多少度?
(2)△DBE是什么三角形?为什么?

解:(1)∵△ABC是等边三角形,
∴∠ACB=60°,
∵CD=CE,
∴∠E=∠CDE,
∵∠ACB=∠E+∠CDE,


(2)∵△ABC是等边三角形,BD⊥AC,
∴∠ABC=60°,

∵∠E=30°,
∴∠DBC=∠E,
∴△DBE是等腰三角形.
分析:(1)由题意可推出∠ACB=60°,∠E=∠CDE,然后根据三角形外角的性质可知:∠ACB=∠E+∠CDE,即可推出∠E的度数;
(2)根据等边三角形的性质可知,BD不但为AC边上的高,也是∠ABC的角平分线,即得:∠DBC=30°,然后再结合(1)中求得的结论,即可推出△DBE是等腰三角形.
点评:本题主要考查等边三角形的性质、三角形外角的性质、等腰三角形的判定和性质,解题的关键在于认真阅读题目给出的已知条件,结合相关的性质定理,推出∠E的度数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,⊙O过点B,C,且与BA,CA的延长线分别交于点D,E,弦DF精英家教网∥AC,EF的延长线交BC的延长线于点G.
(1)求证:△BEF是等边三角形;
(2)若BA=4,CG=2,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图,△ABC是等边三角形,过AB边上一点D作BC的平行线交AC于E,则△ADE的三个内角
等于60度.(填“都”、“不都”或“都不”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC是等边三角形,AB=4cm,则BC边上的高AD等于
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,D为BC边上的点,∠BAD=15°,将△ABD绕点A点逆时针方向旋转后到达△ACE的位置,那么旋转角的度数是
60°
60°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连结BD并延长与CE交于点E.
(1)直接写出∠ECF的度数等于
60
60
°;
(2)求证:△ABD∽△CED;
(3)若AB=12,AD=2CD,求BE的长.

查看答案和解析>>

同步练习册答案