精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.

(1)求该抛物线的解析式;

(2)求该抛物线的对称轴以及顶点坐标;

(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足SPAB=8,并求出此时P点的坐标.

【答案】(1)y=x2﹣2x﹣3.(2)对称轴x=1,顶点坐标(1,﹣4).(3)点P在该抛物线上滑动到(1+2,4)或(1﹣2,4)或(1,﹣4)时,满足SPAB=8.

【解析】

试题分析:(1)由于抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,那么可以得到方程x2+bx+c=0的两根为x=﹣1或x=3,然后利用根与系数即可确定b、c的值.

(2)根据SPAB=8,求得P的纵坐标,把纵坐标代入抛物线的解析式即可求得P点的坐标.

试题解析:(1)抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,

方程x2+bx+c=0的两根为x=﹣1或x=3,

﹣1+3=﹣b,

﹣1×3=c,

b=﹣2,c=﹣3,

二次函数解析式是y=x2﹣2x﹣3.

(2)y=﹣x2﹣2x﹣3=(x﹣1)2﹣4,

抛物线的对称轴x=1,顶点坐标(1,﹣4).

(3)设P的纵坐标为|yP|,

SPAB=8,

AB|yP|=8,

AB=3+1=4,

|yP|=4,

yP=±4,

把yP=4代入解析式得,4=x2﹣2x﹣3,

解得,x=1±2

把yP=﹣4代入解析式得,﹣4=x2﹣2x﹣3,

解得,x=1,

点P在该抛物线上滑动到(1+2,4)或(1﹣2,4)或(1,﹣4)时,满足SPAB=8.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c与x轴分别交于点A(﹣3,0)和点B,与y轴交于点C(0,3),顶点为点D,对称轴DE交x轴于点E,连接AD,AC,DC.

(1)求抛物线的函数表达式.

(2)判断ADC的形状,并说明理由.

(3)对称轴DE上是否存在点P,使点P到直线AD的距离与到x轴的距离相等?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,AB为O的直径,AB=AC,BC交O于点D,AC交O于点E,BAC=45°.

(1)求EBC的度数;

(2)求证:BD=CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一个多边形,它的内角和等于它的外角和的2倍,则它是(
A.三边形
B.四边形
C.五边形
D.六边形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2011?海南)a2倍大l的数用代数式表示是( )

A. 2a+1B. 2a﹣1

C. 2a+1 D. 2a﹣1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示MPNQ分别垂直平分ABAC.

(1)若△APQ的周长为12BC的长;

(2)BAC105°求∠PAQ的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是正方形,E点在AB上,F点在BC的延长线上,且CF=AE,连接DE、DF、EF.

求证:ADE≌△CDF;

填空:CDF可以由ADE绕旋转中心 点,按逆时针方向旋转 度得到;

若BC=3,AE=1,求DEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】x2-4x+c分解因式得(x - 1) (x -3),则c的值为(

A.4B.3C.-3D.-4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一个长方体的长为2a,宽也是2a,高为h.

(1)用a 、h的代数式表示该长方体的体积与表面积.

(2)当a=3,h=时,求相应长方体的体积与表面积.

(3)在(2)的基础上,把长增加x,宽减少x,其中0<x<6,问长方体的体积是否发生变化,并说明理由.

查看答案和解析>>

同步练习册答案