精英家教网 > 初中数学 > 题目详情

【题目】已知:在菱形ABCD中,O是对角线BD上的一动点.

1)如图甲,P为线段BC上一点,连接PO并延长交AD于点Q,当OBD的中点时,求证:

2)如图乙,连接AO并延长,与DC交于点R,与BC的延长线交于点,求ASOR的长.

【答案】(1)见解析;(2).

【解析】

1)根据菱形的性质证明ODQ≌△OBP,即可得到

2)首先求AS的长,要通过构建直角三角形求解;过ABC的垂线,设垂足为T,在RtABT中,易证得∠ABT=DCB=60°,又已知了斜边AB的长,通过解直角三角形可求出ATBT的长;进而可在RtATS中,由勾股定理求出斜边AS的值;由于四边形ABCD是菱形,则ADBC,易证得ADO∽△SBO,已知了ADBS的长,根据相似三角形的对应边成比例线段可得出OAOS的比例关系式,即可求出OAOS的长;同理,可通过相似三角形ADRSCR求得ARRS的值;由OR=OS-RS即可求出OR的长.

1)证明:四边形ABCD为菱形,

,

BD的中点,

,

中,

2)解:如图乙,

A,与CB的延长线交于T

是菱形,

中,

,

中,

同理可得

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°,将ABC绕顶点C逆时针旋转得到A'B'CMBC的中点,NA'B'的中点,连接MN,若BC4,∠ABC60°,则线段MN的最大值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某花圃销售一批名贵花卉,平均每天可售出20盆,每盆盈利40元,为了增加盈利并尽快减少库存,花圃决定采取适当的降价措施,经调查发现,如果每盆花卉每降1元,花圃平均每天可多售出2盆.

1)若花圃平均每天要盈利1200元,每盆花卉应降价多少元?

2)每盆花卉降低多少元时,花圃平均每天盈利最多,是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在环境创优活动中,某居民小区要在一块靠墙(墙长25米)的空地上修建一个矩形养鸡场,养鸡场的一边靠墙,如果用60m长的篱笆围成中间有一道篱笆的养鸡场,设养鸡场平行于墙的一边BC的长为x(m),养鸡场的面积为y(m2

(1)求y与x之间的函数关系式,并写出自变量x的取值范围;

(2)养鸡场的面积能达到300m2吗?若能,求出此时x的值,若不能,说明理由;

(3)根据(1)中求得的函数关系式,判断当x取何值时,养鸡场的面积最大?最大面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知矩形ABCD,AD=4,CD=10,PAB上一动点,M、N、E分别是PD、PC、CD的中点.

(1)求证:四边形PMEN是平行四边形;

(2)请直接写出当AP为何值时,四边形PMEN是菱形;

(3)四边形PMEN有可能是矩形吗?若有可能,求出AP的长;若不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点BC是线段AD上的点,△ABE、△BCF、△CDG都是等边三角形,且AB4BC6,已知△ABE与△CDG的相似比为25.则

CD____

②图中阴影部分面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F.

(1)求证:△ACF∽△DAE;

(2)若S△AOC=,求DE的长;

(3)连接EF,求证:EF是⊙O的切线.

【答案】(1) 见解析; (2)3 ;(3)见解析.

【解析】试题分析:(1)根据圆周角定理得到BAC=90°,根据三角形的内角和得到ACB=60°根据切线的性质得到OAF=90°,∠DBC=90°,于是得到D=∠AFC=30°由相似三角形的判定定理即可得到结论;

(2)根据SAOC=,得到SACF=,通过ACF∽△DAE,求得SDAE=,过AAHDEH,解直角三角形得到AH=DH=DE,由三角形的面积公式列方程即可得到结论;

(3)根据全等三角形的性质得到OE=OF,根据等腰三角形的性质得到OFG=(180°﹣∠EOF)=30°,于是得到AFO=∠GFO,过OOGEFG,根据全等三角形的性质得到OG=OA,即可得到结论.

试题解析:(1)证明:BCO的直径,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°

OA=OC,∴∠AOC=60°,∵AFO的切线,∴∠OAF=90°,∴∠AFC=30°,∵DEO的切线,∴∠DBC=90°,∴∠D=∠AFC=30,∵∠DAE=ACF=120°,∴△ACF∽△DAE

(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,∴∠CAF=30°,∴∠CAF=∠AFC,∴AC=CF,∴OC=CF,∵SAOC=,∴SACF=,∵∠ABC=∠AFC=30°,∴AB=AF,∵AB=BD,∴AF=BD,∴∠BAE=∠BEA=30°,∴AB=BE=AF,∴,∵△ACF∽△DAE,∴=,∴SDAE=,过AAHDEH,∴AH=DH=DE,∴SADE=DEAH=×=,∴DE=

(3)∵∠EOF=∠AOB=120°,∴∠OEB=∠AFOAOFBOE中,∵∠OBE=∠OAF,∠OEB=∠AFOOA=OB,∴△AOF≌△BEO,∴OE=OF,∴∠OFG=(180°﹣∠EOF)=30°,∴∠AFO=∠GFO,过OOGEFG,∴∠OAF=∠OGF=90°,在AOFOGF中,∵∠OAF=∠OGF,∠AFO=∠GFOOF=OF,∴△AOF≌△GOF,∴OG=OA,∴EFO的切线.

型】解答
束】
25

【题目】如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.

(1)填空:点B的坐标为   

(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;

(3)①求证:

②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y1=kx+b与二次函数y2=ax2的图象交于A(﹣1,n),B(2,4)两点.

(1)利用图中条件,求两个函数的解析式;

(2)根据图象直接写出使y1<y2的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解本学期初三期中调研测试数学试题的命题质量与难度系数,命题教师选取了一个水平相当的初三年级进行分析研究,随机抽取部分学生成绩(得分为整数,满分为130)分为5:第一组5570,第二组7085,第三组85100,第四组100115,第五组115130;统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:

(1)本次调查共随机抽取了该年级多少名学生?并将频数分布直方图补充完整;

(2)若将得分转化为等级,规定:得分低于70分评为“D”,70100分评为“C”,100115分评为“B”,115130分评为“A”,那么该年级1500名考生中,考试成绩评为“B”的学生大约有多少名?

查看答案和解析>>

同步练习册答案