证明:(1)在△ABC中,E、F分别是AB、BC的中点,
故可得:EF=

AC,同理FG=

BD,GH=

AC,HE=

BD,
在梯形ABCD中,AB=DC,
故AC=BD,
∴EF=FG=GH=HE,
∴四边形EFGH是菱形.
在△ABD中,E、H分别是AB、AD的中点,
则EH∥BD,
同理GH∥AC,
又∵AC⊥BD,
∴EH⊥HG,
∴四边形EFGH是正方形.

(2)连接EG.
在梯形ABCD中,
∵E、G分别是AB、DC的中点,
∴EG是梯形的中位线,
∴EG=

(AD+BC)=3.
在Rt△EHG中,
∵EH
2+GH
2=EG
2,EH=GH,
∴EH
2=

,即四边形EFGH的面积为

.
分析:(1)先由三角形的中位线定理求出四边相等,然后由AC⊥BD入手,进行正方形的判断.
(2)连接EG,利用梯形的中位线定理求出EG的长,然后结合(1)的结论求出EH
2=

,也即得出了正方形EHGF的面积.
点评:此题考查了等腰梯形的性质及三角形、梯形的中位线定理,解答本题的关键是根据三角形的内角和定理得出EH=HG=GF=FE,这是本题的突破口.