精英家教网 > 初中数学 > 题目详情
3.如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,
(1)求证:∠DHO=∠DCO.
(2)若OC=4,BD=6,求菱形ABCD的周长和面积.

分析 (1)先根据菱形的性质得OD=OB,AB∥CD,BD⊥AC,则利用DH⊥AB得到DH⊥CD,∠DHB=90°,所以OH为Rt△DHB的斜边DB上的中线,得到OH=OD=OB,利用等腰三角形的性质得∠1=∠DHO,然后利用等角的余角相等证明结论;
(2)先根据菱形的性质得OD=OB=$\frac{1}{2}$BD=3,OA=OC=4,BD⊥AC,再根据勾股定理计算出CD,然后利用菱形的性质和面积公式求菱形ABCD的周长和面积.

解答 (1)证明:∵四边形ABCD是菱形,
∴OD=OB,AB∥CD,BD⊥AC,
∵DH⊥AB,
∴DH⊥CD,∠DHB=90°,
∴OH为Rt△DHB的斜边DB上的中线,
∴OH=OD=OB,
∴∠1=∠DHO,
∵DH⊥CD,
∴∠1+∠2=90°,
∵BD⊥AC,
∴∠2+∠DCO=90°,
∴∠1=∠DCO,
∴∠DHO=∠DCO;
(2)解:∵四边形ABCD是菱形,
∴OD=OB=$\frac{1}{2}$BD=3,OA=OC=4,BD⊥AC,
在Rt△OCD中,CD=$\sqrt{{3}^{2}+{4}^{2}}$=5,
∴菱形ABCD的周长=4CD=20,
菱形ABCD的面积=$\frac{1}{2}$×6×8=24.

点评 本题考查了菱形的性质:有一组邻边相等的平行四边形叫做菱形.熟练掌握菱形的性质(菱形具有平行四边形的一切性质; 菱形的四条边都相等; 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角). 解决(1)小题的关键是判断OH为直角三角形斜边上的中线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

13.把$\sqrt{\frac{1}{5}}$化成最简二次根式为(  )
A.5$\sqrt{5}$B.$\frac{1}{5}$$\sqrt{5}$C.-5$\sqrt{5}$D.-$\frac{1}{5}$$\sqrt{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD交OE于点F,若∠AOB=60°.
(1)求证:△OCD是等边三角形;
(2)若EF=5,求线段OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,将三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为(  )
A.30°B.40°C.50°D.60°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知:如图,在?ABCD中,AC⊥AB,点E在AD的延长线上,且BE=BC.若AC=4,CE=$4\sqrt{5}$,求?ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,已知线段a;请你按下列步骤画图:(用圆规、三角板、量角器等工具画图,不写画法,只保留画图痕迹)
①画线段AB=a;
②画线段AB的中点O;
③延长线段AB到点E,使BE=AB;
④画∠AOB的平分线OM;
⑤以O为交点画出表示东南西北的十字线(按照上北下南,左西右东的规定),画出表示北偏西30°的射线OC;
⑥过点B,画PQ∥OC,交直线OM于点G;
⑦写出图形中与∠AOC互余的角;
⑧写出图形中∠GBO和∠QBE之间的位置关系和数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.30°角的余角等于60°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知:如图,AB∥CD,CE∥BF.求证:∠C+∠B=180°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.(1)解方程组:$\left\{\begin{array}{l}2x+y=2;\;\;\;\;\;\;\;\;\;①\\ 3x-2y=10.\;\;\;\;\;\;②\end{array}\right.$
(2)化简:$\frac{{9-{a^2}}}{{{a^2}+6a+9}}÷\frac{{{a^2}-3a}}{a+3}+\frac{1}{a}$.

查看答案和解析>>

同步练习册答案