解:
(1)∵在△ADC中,AD=AC,
∴△ADC是等腰三角形,
又∵∠ADC=60°,
∴△ADC是等边三角形(一个内角为60°的等腰三角形是等边三角形);
故答案是:等边;一个内角为60°的等腰三角形是等边三角形;
(2)∵由(1)知,△ADC是等边三角形,
∴DC=AC,∠DCA=60°;
又∵△BCE是等边三角形,
∴CB=CE,∠BCE=60°,
∴∠DCA+∠ACB=∠ECB+∠ACB,即∠DCB=∠ACE,
∴△BDC≌△EAC(SAS),
∴BD=EA(全等三角形的对应边相等);
(3)证明:∵由(2)知,△BCE是等边三角形,则BC=CE,∠CBE=60°.
∴∠ABE=∠ABC+∠CBE=90°.
在Rt△ABE中,由勾股定理得AE
2=AB
2+BE
2.
又∵BD=AE,
∴BD
2=AB
2+BC
2.
分析:(2)通过全等三角形的判定定理SAS证得△BDC≌△EAC,然后根据全等三角形的对应边相等推知BD=EA;
(3)要证明BD
2=AB
2+BC
2,只需证明△ABE是直角三角形即可(BD=AE).
点评:本题考查了等边三角形的判定、全等三角形的判定与性质以及勾股定理.如果一个三角形满足下列任意一条,则它必满足另一条,三边相等或三角相等的三角形为等边三角形:①三边长度相等;②三个内角度数均为60度;③一个内角为60度的等腰三角形.