| A. | 6 | B. | 5 | C. | 4 | D. | 8 |
分析 根据∠BAC=90°,AB=AC,得到∠BAD+∠CAD=90°,由于CE⊥AD于E,于是得到∠ACE+∠CAE=90°,根据余角的性质得到∠BAD=∠ACE,推出△ABD≌△ACE,根据全等三角形的性质即可得到结论.
解答 解:∵∠BAC=90°,AB=AC,
∴∠BAD+∠CAD=90°,
∵CE⊥AD于E,
∴∠ACE+∠CAE=90°,
∴∠BAD=∠ACE,
在△ABD与△ACE中,
$\left\{\begin{array}{l}{∠D=∠AEC=90°}\\{∠BAD=∠ACE}\\{AB=AC}\end{array}\right.$,
∴△ABD≌△ACE,
∴AE=BD=4,AD=CE=10,
∴DE=AD-AE=6.
故选A.
点评 本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,利用余角的性质得出∠BAD=∠ACE是解题关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2$\sqrt{3}$-2 | B. | $\sqrt{3}$ | C. | 4-2$\sqrt{2}$ | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com