精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',B'C与AD交于点E,AD的延长线与A'D'交于点F.

(1)如图①,当α=60°时,连接DD',求DD'和A'F的长;

(2)如图②,当矩形A'B'CD'的顶点A'落在CD的延长线上时,求EF的长;
(3)如图③,当AE=EF时,连接AC,CF,求ACCF的值.

【答案】
(1)

解:①如图①中,∵矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',

∴A′D′=AD=B′C=BC=4,CD′=CD=A′B′=AB=3∠A′D′C=∠ADC=90°,

∵α=60°,

∴∠DCD′=60°,

∴△CDD′是等边三角形,

∴DD′=CD=3.

②如图①中,连接CF.

∵CD=CD′,CF=CF,∠CDF=∠CD′F=90°,

∴△CDF≌△CD′F,

∴∠DCF=∠D′CF= ∠DCD′=30°,

在Rt△CD′F中,∵tan∠D′CF=

∴D′F=

∴A′F=A′D′﹣D′F=4﹣


(2)

解:如图②中,

在Rt△A′CD′中,∵∠D′=90°,

∴A′C2=A′D′2+CD′2

∴A′C=5,A′D=2,

∵∠DA′F=∠CA′D′,∠A′DF=∠D′=90°,

∴△A′DF∽△A′D′C,

=

=

∴DF=

同理可得△CDE∽△CB′A′,

=

=

∴ED=

∴EF=ED+DF=


(3)

解:如图③中,作FG⊥CB′于G.

∵四边形A′B′CD′是矩形,

∴GF=CD′=CD=3,

∵SCEF= EFDC= CEFG,

∴CE=EF,∵AE=EF,

∴AE=EF=CE,

∴∠ACF=90°,

∵∠ADC=∠ACF,∠CAD=∠FAC,

∴△CAD∽△FAC,

=

∴AC2=ADAF,

∴AF=

∵SACF= ACCF= AFCD,

∴ACCF=AFCD=


【解析】(1)①如图①中,∵矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',只要证明△CDD′是等边三角形即可解决问题;②如图①中,连接CF,在Rt△CD′F中,求出FD′即可解决问题;(2)由△A′DF∽△A′D′C,可得 = ,推出DF= ,同理可得△CDE∽△CB′A′,由 = ,求出DE,即可解决问题;(3)如图③中,作FG⊥CB′于G,由SACF= ACCF= AFCD,把问题转化为求AFCD,只要证明∠ACF=90°,证明△CAD∽△FAC,即可解决问题;
【考点精析】利用相似三角形的应用和旋转的性质对题目进行判断即可得到答案,需要熟知测高:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决;测距:测量不能到达两点间的举例,常构造相似三角形求解;①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图A在数轴上所对应的数为﹣2

1)点B在点A右边距A4个单位长度,求点B所对应的数;

2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点 B 以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求AB两点间距离.

3)在2)的条件下,现A点静止不动,B点再以每秒2个单位长度沿数轴向左运动时,经过多长时间AB两点相距4个单位长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解应用题.

程大位明代商人珠算发明家被称为珠算之父、卷尺之父.少年时读书极为广博对数学颇感兴趣60岁时完成其杰作《直指算法统宗》简称《算法统宗》).

在《算法统宗》里记载了一道趣题一百馒头一百僧大僧三个更无争小僧三人分一个大小和尚各几丁意思是100个和尚分100个馒头如果大和尚1人分3小和尚3人分1正好分完.试问大、小和尚各多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】九章算术是我国东汉初年编订的一部数学经典著作在它的“方程”一章里,一次方程组是由算筹布置而成的九章算术中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图图中各行从左到右列出的算筹数分别表示未知数xy的系数与相应的常数项把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是类似地,图2所示的算筹图我们可以表述为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.

(1)求港口A到海岛B的距离;

(2)B岛建有一座灯塔,在灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】陈老师和学生做一个猜数游戏,他让学生按照如下步骤进行计算:

①任想一个两位数a,把a乘以2,再加上9,把所得的和再乘以2

②把a乘以2,再加上30,把所得的和除以2

③把①所得的结果减去②所得的结果,这个差即为最后的结果.

陈老师说:只要你告诉我最后的结果,我就能猜出你最初想的两位数a

学生周晓晓计算的结果是96,陈老师立即猜出周晓晓最初想的两位数是31

请完成

1)由①可列代数式   ,由②可列代数式   ,由③可知最后结果为   ;(用含a的式子表示)

2)学生小明计算的结果是120,你能猜出他最初想的两位数是多少吗?

3)请用自己的语言解释陈老师猜数的方法.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学改革学生的学习模式,变“老师要学生学习”为“学生自主学习”,培养了学生自主学习的能力.小华与小明同学就“你最喜欢哪种学习方式”随机调查了他们周围的一些同学,根据收集到的数据绘制了以下两个不完整的统计图(如图).

请根据上面两个不完整的统计图回答以下4个问题:

(1)这次抽样调查中,共调查了_____名学生.

(2)补全条形统计图中的缺项.

(3)在扇形统计图中,选择教师传授的占_____%,选择小组合作学习的占_____%.

(4)根据调查结果,估算该校1800名学生中大约有_____人选择小组合作学习模式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人两次同时在一家粮店购买大米,两次大米的价格分别为每千克a元和b元(a≠b).甲每次买100千克大米,乙每次买100元大米.

(1)用含a、b的代数式表示:甲两次购买大米共需付款   元,乙两次共购买   千克大米.若甲两次购买大米的平均单价为每千克Q1元,乙两次购买大米的平均单价为每千克Q2元.则:Q1=   ;Q2=   

(2)若规定谁两次购粮的平均价格低,谁购粮的方式就更合理,请你判断比较甲、乙两人的购粮方式,哪一个更合理,并说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】新农村实行大面积机械化种植,为了更好地收割庄稼,农田承包大户张大叔决定购买8台收割机,现有久保田和春雨两种品牌的收割机,其中每台收割机的价格、每天的收割面积如下表销售商又宣传说,购买一台久保田收割机比购买一台春雨收割机多8万元,购买2台久保田收割机比购买3台春雨收割机多4万元.

久保田收割机

春雨收割机

价格万元

x

y

收割面积

24

18

求两种收割机的价格;

如果张大叔购买收割机的资金不超过125万元,那么有哪几种购买方案?

的条件下,若每天要求收割面积不低于150亩,为了节约资金,那么有没有一种最佳购买方案呢?

查看答案和解析>>

同步练习册答案