精英家教网 > 初中数学 > 题目详情
(2010•柳州)如图,AB为⊙O的直径,且弦CD⊥AB于E,过点B的切线与AD的延长线交于点F.
(1)若M是AD的中点,连接ME并延长ME交BC于N.求证:MN⊥BC.
(2)若cos∠C=,DF=3,求⊙O的半径.
【答案】分析:(1)连接AC.欲求MN⊥BC,只需证MN∥AC即可.由于直径AB⊥CD,由垂径定理知E是CD中点,而M是AD的中点,故EM是△ACD的中位线,可得ME(即MN)∥AC,由此得证.
(2)由于∠A、∠C所对的弧相同,因此cosA=cosC,由此可得BF、AF、AB的比例关系,用未知数表示出它们的长.
连接BD,证△BDF∽△ABF,根据所得比例线段即可求得未知数的值(也可利用切割线定理求解),从而得到直径AB的长,也就能求出⊙O的半径.
解答:(1)证明:
(方法一)连接AC.
∵AB是⊙O的直径,且AB⊥CD于E,
由垂径定理得,点E是CD的中点;
又∵M是AD的中点,
∴ME是△DAC的中位线,
∴MN∥AC.
∵AB是⊙O的直径,∴∠ACB=90°.
∴∠MNB=90°,即MN⊥BC;
(方法二)∵AB⊥CD,∴∠AED=∠BEC=90°.
M是AD的中点,
∴ME=AM,即有∠MEA=∠A.
∵∠MEA=∠BEN,∠C=∠A,
∴∠C=∠BEN.
又∵∠C+∠CBE=90°,
∴∠CBE+∠BEN=90°,
∴∠BNE=90°,即MN⊥BC;
(方法三)∵AB⊥CD,∴∠AED=90°.
由于M是AD的中点,
∴ME=MD,即有∠MED=∠EDM.
又∵∠CBE与∠EDA同对,∴∠CBE=∠EDA.
∵∠MED=∠NEC,
∴∠NEC=∠CBE.
∵∠C+∠CBE=90°,
∴∠NEC+∠C=90°,
即有∠CNE=90°,即MN⊥BC.

(2)解:连接BD.
∵∠BCD与∠BAF同对,∴∠C=∠A,
∴cos∠A=cos∠C=
∵BF是⊙O的切线,∴∠ABF=90°.
在Rt△ABF中,cos∠A==
设AB=4x,则AF=5x,由勾股定理得:BF=3x.
∵AB是⊙O的直径,∴BD⊥AD,
∴△ABF∽△BDF,


x=
∴直径AB=4x=4×
则⊙O的半径为
点评:此题主要考查了垂径定理、圆周角定理、三角形中位线定理以及相似三角形的判定和性质等知识,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源:2011年3月江苏省镇江市外国语学校九年级(下)月考数学试卷(解析版) 题型:解答题

(2010•柳州)如图,在8×8的正方形网格中,△ABC的顶点和线段EF的端点都在边长为1的小正方形的顶点上.
(1)填空:∠ABC=______,BC=______

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《锐角三角函数》(08)(解析版) 题型:解答题

(2010•柳州)如图,从热气球P上测得两建筑物A、B的底部的俯视角分别为45°和30°,如果A、B两建筑物的距离为90m,P点在地面上的正投影恰好落在线段AB上,求热气球P的高度.(结果精确到0.01m,参考数据:≈1.732,≈1.414)

查看答案和解析>>

科目:初中数学 来源:2010年广西柳州市中考数学试卷(解析版) 题型:选择题

(2010•柳州)如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=3cm,则点D到AB的距离DE是( )

A.5cm
B.4cm
C.3cm
D.2cm

查看答案和解析>>

科目:初中数学 来源:2010年广西柳州市中考数学试卷(解析版) 题型:选择题

(2010•柳州)如图,点A、B、C是直线l上的三个点,图中共有线段条数是( )
A.1条
B.2条
C.3条
D.4条

查看答案和解析>>

同步练习册答案