【题目】任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=.例如18可分解成1×18,2×9,3×6这三种,这时就有F(18)==.给出下列关于F(n)的说法:
(1)F(2)=;(2)F(12)=;(3)F(27)=3;(4)若n是一个完全平方数,则F(n)=1.
其中正确说法的个数是( )
A. 1个B. 2个C. 3个D. 4个
科目:初中数学 来源: 题型:
【题目】在一个布口袋里装有红色、黑色、蓝色和白色的小球各1个,如果闭上眼睛随机地从布袋中取出一个球,记下颜色,放回布袋搅匀,再闭上眼睛随机的再从布袋中取出一个球.用树状图或列表法解决求:
(1)连续两次恰好都取出白色球的概率;
(2)连续两次恰好取出一红、一黑的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲口袋中装有两个相同的小球,它们的标号分别为2和7,乙口袋中装有两个相同的小球,它们的标号分别为4和5,丙口袋中装有三个相同的小球,它们的标号分别为3,8,9.从这3个口袋中各随机地取出1个小球.
(1)求取出的3个小球的标号全是奇数的概率是多少?
(2)以取出的三个小球的标号分别表示三条线段的长度,求这些线段能构成三角形的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题满分8分)如图,四边形ABCD中,,E是边CD的中点,连接BE并延长与AD的延长线相较于点F.
(1)求证:四边形BDFC是平行四边形;
(2)若△BCD是等腰三角形,求四边形BDFC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】完成下面的证明过程:
如图所示,直线AD与AB,CD分别相交于点A,D,与EC,BF分别相交于点H,G,已知∠1=∠2,∠B=∠C.
求证:∠A=∠D.
证明:∵∠1=∠2,(已知)∠2=∠AGB( )
∴∠1= ( )
∴EC∥BF( )
∴∠B=∠AEC( )
又∵∠B=∠C(已知)
∴∠AEC= ( )
∴ ( )
∴∠A=∠D( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读并探究下列问题:
(1)如图1,将长方形纸片剪两刀,其中AB∥CD,则∠2与∠1、∠3有何关系?为什么?
(2)如图2,将长方形纸片剪四刀,其中AB∥CD,则∠2+∠4与∠1+∠3+∠5有何关系?为什么?
(3)如图3,将长方形纸片剪n刀,其中AB∥CD,你又有何发现?
(4)如图4,直线AB∥CD,∠EFA=30°,∠FGH=90°,∠HMN=30°,∠CNP=50°,则∠GHM= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一蓄水池有水40m3,按一定的速度放水,水池里的水量y(m3)与放水时间t(分)有如下关系:
放水时间(分) | 1 | 2 | 3 | 4 | … |
水池中水量(m3) | 38 | 36 | 34 | 32 | … |
下列结论中正确的是( )
A. y随t的增加而增大
B. 放水时间为15分钟时,水池中水量为8m3
C. 每分钟的放水量是2m3
D. y与t之间的关系式为y=40t
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,抛物线( a≠0)经过原点,顶点为A(h,k)(h≠0).
(1)当h=1,k=2时,求抛物线的解析式;
(2)若抛物线(t≠0)也经过A点,求a与t之间的关系式;
(3)当点A在抛物线上,且-2≤h<1时,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com