精英家教网 > 初中数学 > 题目详情
(2012•宁波一模)已知:如图,Rt△ABC外切于⊙O,切点分别为E、F、H,∠ABC=90°,直线FE、CB交于D点,连接AO、HE,则下列结论:
①∠FEH=45°+∠FAO;②BD=AF;③AB2=AO•DF;④AE•CH=S△ABC
其中正确的是(  )
分析:连接OE,OH,OF,OB,
①由切线的性质和四边形的内角和即可得∠FOH=180°-∠C=90°+∠BAC,再圆周角定理即可得到证明结论正确;
②根据已知条件知道四边形OEBH是正方形,然后证明△BDE≌△FAO,然后利用全等三角形的对应边相等即可得出结论;
③根据已知条件可以证明△DFH∽△ABO,根据相似三角形的对应边成比例和已知条件即可证明结论正确;
④根据直角三角形的面积公式直接解答即可.
解答:解:①连接OE,OH,则OE⊥AB,OH⊥BC,
得出:∠FOH=180°-∠C=90°+∠BAC,
根据圆周角定理得∠FEH=
1
2
∠FOH=45°+∠FAO,故此选项正确;

②连接OF,由①得四边形OEBH是正方形,
则圆的半径=BE,
∴OF=BE,
又∠DBE=∠AFO,∠BED=∠AEF=∠AFE,
则△BDE≌△FAO(SAS),
∴BD=AF;
故此选项正确;

③∵Rt△ABC外切于⊙O,切点分别为E、F、H,
∴BE=BH,AF=AE,
根据②得BD=AF,
∴BD=AE(等量代换),
∴AB=DH;
连接OB、FH.
∵∠D=∠BAO,∠EFH=∠OBA=45°,
∴△DFH∽△ABO,
则DH•AB=AO•DF,又AB=DH,
所以AB2=AO•DF;故此选项正确.

④设△ABC的三边分别为a,b,c,则AE=
b+c-a
2
,CH=
a+b-c
2
,AE•CH=
(b+c-a)(a+b-c)
4
=
ab
2
=S△ABC
故S△ABC=
1
2
AB•BC=AE•CH;
故此选项正确;
综上所述,正确的说法有①②③④;
故选A.
点评:本题考查了三角形的内切圆与内心.此题综合运用了切线的性质定理、切线长定理、圆周角定理和相似三角形的性质和判定,综合性比较强.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•宁波一模)请你先化简(
2x
x-3
-
x
x+3
)•
x2-9
x
,再从-2,2,
2
中选择一个合适的数代入求值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•宁波一模)如图1,P是锐角△ABC所在平面上一点.如果∠APB=∠BPC=∠CPA=120°,则点P就叫做△ABC费马点.
(1)当△ABC是边长为4的等边三角形时,费马点P到BC边的距离为
2
3
3
2
3
3

(2)若点P是△ABC的费马点,∠ABC=60°,PA=2,PC=3,则PB的值为
6
6

(3)如图2,在锐角△ABC外侧作等边△ACB′,连接BB′.求证:BB′过△ABC的费马点P.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•宁波一模)现有4条线段,长度分别为2cm,4cm,5cm,7cm,从中任取3条,能构成三角形的概率是
1
2
1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•宁波一模)在正方形ABCD中,O是AD的中点,点P从A点出发沿A→B→C→D的路线匀速运动,移动到点D时停止.
(1)如图1,若正方形的边长为12,点P的运动速度为2单位长度/秒,设t秒时,正方形ABCD与∠POD重叠部分的面积为y.
①求当t=4,8,14时,y的值.
②求y关于t的函数解析式.
(2)如图2,若点Q从D出发沿D→C→B→A的路线匀速运动,移动到点A时停止.P、Q两点同时出发,点P的速度大于点Q的速度.设t秒时,正方形ABCD与∠POQ(包括边缘及内部)重叠部分的面积为S,S与t的函数图象如图3所示.
①P,Q两点在第
4
4
秒相遇;正方形ABCD的边长是
4
4

②点P的速度为
2
2
单位长度/秒;点Q的速度为
1
1
单位长度/秒.
③当t为何值时,重叠部分面积S等于9?

查看答案和解析>>

同步练习册答案