精英家教网 > 初中数学 > 题目详情
如图,已知二次函数y=ax2+bx+3(a≠0)的图象与x轴交于点A(-1,0)和点B(3,0)两点(点A在点B的左边),与y轴交于点C.
(1)求此二次函数的解析式,并写出它的对称轴;
(2)若直线l:y=kx(k>0)与线段BC交于点D(不与点B,C重合),则是否存在这样的直线l,使得以B,O,D为顶点的三角形与△BAC相似?若存在,求出点D的坐标;若不存在,请说明理由;
(3)若直线l′:y=m与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度.
精英家教网
分析:(1)将A、B的坐标代入抛物线的解析式中,通过联立方程组即可得到待定系数的值,从而确定该抛物线的解析式和对称轴方程;
(2)易知A、B、C的坐标,即可得到AB、BC、OB的长,若以B,O,D为顶点的三角形与△BAC相似,则有两种情况:△OBD∽△ABC或△DBO∽△ABC,根据相似三角形所得比例线段,即可求得BD的长,易知△OBC是等腰直角三角形,那么△OBD也是等腰直角三角形,即可由BD的长求出DE、BE的值,从而确定点D的坐标;
(3)由于以MN为直径的圆与x轴相切,那么圆心的纵坐标的绝对值等于MN的一半也就是圆的半径,所以可利用抛物线的对称轴和圆的半径表示出M或N的坐标,然后代入抛物线的解析式中,即可求得此圆的半径长.
解答:解:(1)把点A(-1,0)、B(3,0)的坐标代入解析式中,得:
a-b+3=0
9a+3b+3=0
,(1分)
解得
a=-1
b=2

∴解析式为y=-x2+2x+3,(2分)
对称轴为直线x=1;(3分)

(2)∵点A(-1,0)、B(3,0)、C(0,3),
∴OB=OC=3,OA=1,BC=3
2
,AB=4,
∠OCB=∠OBC=45°,tan∠CAO=3;(4分)
若△OBD∽△ABC,则
OB
BA
=
BD
BC
,(5分)精英家教网
3
4
=
BD
3
2
BD=
9
2
4
,过D作DE⊥x轴于点E,
DE=
2
2
9
2
4
=
9
4
OE=OB-BE=OB-DE=3-
9
4
=
3
4

D (
3
4
, 
9
4
)
;(6分)
若△DBO∽△ABC,则
OB
BC
=
BD
BA
,(7分)
3
3
2
=
BD
4
BD=2
2
,过D作DE⊥x轴于点E,
DE=
2
2
•2
2
=2
,OE=OB-BE=OB-DE=3-2=1,
∴D(1,2)(8分)
D (
3
4
, 
9
4
)
或D(1,2);
精英家教网
(3)如图,①当直线MN在x轴上方时
设圆的半径为r(r>0),则N(r+1,r),(9分)
代入抛物线的表达式,
解得r=
-1+
17
2
(10分)
②当直线MN在x轴下方时,
设圆的半径为R(R>0),则N(R+1,-R),(11分)
代入抛物线的表达式,
解得R=
1+
17
2
(12分)
∴圆的半径为
1+
17
2
-1+
17
2
点评:此题是二次函数的综合题,涉及到二次函数解析式的确定、相似三角形的判定和性质、直线与圆的位置关系等知识,同时还应用了分类讨论的数学思想,综合性强,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知二次函数图象的顶点坐标为C(1,1),直线y=kx+m的图象与该二次函数的图象交于A、B两点,其中A点坐标为(
5
2
13
4
),B点在y轴上,直线与x轴的交点为F,P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于E点.
(1)求k,m的值及这个二次函数的解析式;
(2)设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;
(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在点P,使得以点P、E、D为顶点的精英家教网三角形与△BOF相似?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+b与该二次函数的图象交于A、B两点,其中点A的坐标为(3,4),点B在y轴上.点P为线段AB上的一个动点(点P与A、B不重合),过点P作x轴的垂线与该二次函数的图象交于点E.
(1)求b的值及这个二次函数的关系式;
(2)设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;
(3)若点D为直线AB与该二次函数的图象对称轴的交点,则四边形DCEP能否构成平行四边形?如果能,请求出此时P点的坐标;如果不能,请说明理由.
(4)以PE为直径的圆能否与y轴相切?如果能,请求出点P的坐标;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知二次函数y=ax2-4x+c的图象与坐标轴交于点A(-1,0)和点C(0,-5).
(1)求该二次函数的解析式和它与x轴的另一个交点B的坐标.
(2)在上面所求二次函数的对称轴上存在一点P(2,-2),连接OP,找出x轴上所有点M的坐标,使得△OPM是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•衡水一模)如图,已知二次函数y=-
12
x2+bx+c
的图象经过A(2,0)、B(0,-6)两点.
(1)求这个二次函数的解析式;
(2)设该二次函数图象的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积;
(3)若抛物线的顶点为D,在y轴上是否存在一点P,使得△PAD的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案