精英家教网 > 初中数学 > 题目详情
9.如图,AB是⊙O的直径,点C是⊙O上一点,AD和过点C的切线互相垂直,垂足为D,直线DC与AB的延长线相交于P.弦CE平分∠ACB,交直径AB于点F,连结BE.
(1)求证:AC平分∠DAB;
(2)探究线段PC,PF之间的大小关系,并加以证明;
(3)若tan∠CEB=$\frac{3}{4}$,BE=5$\sqrt{2}$,求AC、BC的长.

分析 (1)先判断出∠OAC=∠OCA,再判断出OC∥AD,即可得出结论;
(2)先判断出∠CAD+∠ACD=90°,进而得出∠PFC=∠PCF即可得出结论;
(3)先求出AB=10,再找出3CA=4BC,最后用勾股定理即可得出结论.

解答 解:(1)如图1,连接OC,
∵OA=OC,
∴∠OAC=∠OCA.
∵PC是⊙O的切线,AD⊥CD,
∴∠OCP=∠D=90°,
∴OC∥AD.
∴∠CAD=∠OCA=∠OAC.
即AC平分∠DAB.

(2)PC=PF.
理由:∵AB是直径,
∴∠ACB=90°,
∴∠PCB+∠ACD=90°
又∵∠CAD+∠ACD=90°,
∴∠CAB=∠CAD=∠PCB. 
又∵∠ACE=∠BCE,∠PFC=∠CAB+∠ACE,∠PCF=∠PCB+∠BCE.
∴∠PFC=∠PCF.
∴PC=PF. 

(3)如图2,连接AE.∵∠ACE=∠BCE,
∴$\widehat{AE}=\widehat{BE}$,
∴AE=BE.
 又∵AB是直径,
∴∠AEB=90°.AB=$\sqrt{2}$BE=10,
∵tan∠CEB=tan∠CAB=$\frac{3}{4}$,
∴$\frac{BC}{CA}$=$\frac{3}{4}$.
设BC=3x,则CA=4x,
在Rt△ABC中,(3x)2+(4x)2=100
解得x=-2(舍)或x=2,
∴BC=6,AC=8.

点评 此题是圆的综合题,主要考查了圆的性质,圆的切线的性质,解平分线的定义,锐角三角函数,勾股定理,解(1)的关键是得出OC∥AD,解(2)的关键是得出∠CAB=∠CAD=∠PCB,解(3)的关键是用勾股定理建立方程,是一道中等难度的中考常考题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

19.已知最简二次根式$\root{a+b-2}{3a-b}$与$\sqrt{8}$是同类二次根式,求a-b的值为-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.(1)计算:($\sqrt{3}$-1)0+2sin30°-($\frac{1}{2}$)-1+|-2017|;
(2)如图,在△ABC中,已知∠ABC=30°,将△ABC绕点B逆时针旋转50°后得到△A1BC1,若∠A=100°,求证:A1C1∥BC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.阅读下面的文字,解答问题
大家知道$\sqrt{2}$是无理数,而无理数是无限不循环小数,因此$\sqrt{2}$的小数部分我们不可能全部地写出来,但是由于
1<$\sqrt{2}$<2,所以$\sqrt{2}$的整数部分为1,将$\sqrt{2}$减去其整数部分1,所得的差就是其小数部分$\sqrt{2}$-1,根据以上的内容,解答下面的问题:
(1)$\sqrt{5}$的整数部分是2,小数部分是$\sqrt{5}$-2;
(2)1+$\sqrt{2}$的整数部分是2,小数部分是$\sqrt{2}$-1;
(3)1+$\sqrt{2}$+$\sqrt{3}$整数部分是4,小数部分是$\sqrt{2}$+$\sqrt{3}$-3;
(4)若设2+$\sqrt{3}$整数部分是x,小数部分是y,求x-$\sqrt{3}$y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.已知a、b、c是三角形的三边长,如果满足(a-5)2+|b-12|+c2-26c+169=0,则三角形的形状是(  )
A.底与边不相等的等腰三角形B.等边三角形
C.钝角三角形D.直角三角形

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,反比例函数y=$\frac{m}{x}$(x>0)与一次函数y=kx+6$\sqrt{3}$交于点C(2,4$\sqrt{3}$),一次函数图象与两坐标轴分别交于点A和点B,动点P从点A出发,沿AB以每秒1个单位长度的速度向点B运动;同时,动点Q从点O出发,沿OA以相同的速度向点A运动,运动时间为t秒(0<t≤6),以点P为圆心,PA为半径的⊙P与AB交于点M,与OA交于点N,连接MN、MQ.
(1)求m与k的值;
(2)当t为何值时,点Q与点N重合;
(3)若△MNQ的面积为S,试求S与t的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,已知:点A(0,2),动点P从点A出发,沿y轴以每秒1个单位长度的速度向上移动,且过点P的直线l:y=-2x+b也随之移动,并与x轴交于点B,设动点P移动时间为t s.
(1)当t=2s时,求直线l的函数表达式;
(2)如果点M(a,3),当OM是Rt△OPB斜边PB上的中线时,在备用图中画出图形,并分别求出t和a的值;
(3)直接写出t为何值时,直线l与双曲线y=$\frac{4}{x}$(x>0)有且仅有一个公共点.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,已知双曲线y=$\frac{k}{x}$经过点A(3,$\frac{20}{3}$),点B是双曲线第三象限上的一个动点,过点A作AD⊥x轴于点D,过点B作BE⊥y轴于点E.
(1)k的值为20;
(2)若△ABD的面积为$\frac{80}{3}$,求直线AB的解析式;
(3)在(2)的条件下,若直线AB与x轴交于点C,猜想四边形CBED的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.某人买甲乙两种水果,甲种水果比乙种水果多买了3千克,共用去44元.已知甲种水果每千克3元,乙种水果每千克4元.问这个人买了甲乙两种水果各多少千克?

查看答案和解析>>

同步练习册答案