精英家教网 > 初中数学 > 题目详情

如图,在平行四边形ABCD中,AB=5,BC=8,AE⊥BC,垂足为E,数学公式
(1)求BE、DE的长;
(2)求∠CDE的正切值.

解:(1)∵Rt△ABE中,
∴BE=AB
∴AE=
∵□ABCD 中,AD∥BC,
∴∠DAE=∠AEB=90°,AD=BC=8,
∴DE=

(2)∵CD=AB=5,CE=BC-BE=8-3=5,
∴CD=CE,
∴∠CDE=∠CED=∠ADE.
∴tan∠CDE=tan∠ADE=
分析:(1)由已知条件可先求出BE的长,然后利用勾股定理求出AE的长,再根据平行四边形的性质和勾股定理即可求出DE的长;
(2)首先计算CE=5,所以CD=CD,进而得到∠CDE=∠CED=∠ADE,所以tan∠CDE=tan∠ADE问题的解.
点评:本题考查了解直角三角形的运用、勾股定理的运用、平行四边形的性质和等腰三角形的判定和性质,解题的关键是找到图形中相等的角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、如图,在平行四边形ABCD中,EF∥AD,GH∥AB,EF、GH相交于点O,则图中共有
9
个平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平行四边形ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F,证明:四边形DFBE是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.点M是边AD上一点,且DM:AD=1:3.点E、F分别从A、C同时出发,以1厘米/秒的速度分别沿AB、CB向点B运动(当点F运动到点B时,点E随之停止运动),EM、CD精英家教网的延长线交于点P,FP交AD于点Q.设运动时间为x秒,线段PC的长为y厘米.
(1)求y与x之间函数关系式,并写出自变量x的取值范围;
(2)当x为何值时,PF⊥AD?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平行四边形ABCD中,AB=2
2
AO=
3
OB=
5
,则下列结论中不正确的是(  )
A、AC⊥BD
B、四边形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•同安区一模)如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,则AD的长为
4cm
4cm

查看答案和解析>>

同步练习册答案