精英家教网 > 初中数学 > 题目详情

已知数学公式(A、B、C是常数),求A、B、C的值.

解:∵=
==

解得:
∴A、B、C的值分别为:-,-
分析:首先通分,然后利用同分母的分式相加减的运算法则求解求得的值,继而可得方程组:,解此方程组即可求得答案.
点评:此题考查了分式的加减运算法则与三元一次方程组的解法.此题难度适中,注意掌握整式相等的条件是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某连队从驻地出发前往离驻地24千米的A地执行任务,队伍常速行军4千米后接驻地通知有重要文件带往A地,通讯员立即沿原线路以急行军的速度返回驻地,取得文件后追赶队伍,他与队伍同时到达A地.已知急行军比常速行军每小时多走2千米,你能算出急行军的速度是多少吗?试用方程知识解答.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示是永州八景之一的愚溪桥,桥身横跨愚溪,面临潇水,桥下冬暖夏凉,常有渔船停泊桥下避晒纳凉.已知主桥拱为抛物线型,在正常水位下测得主拱宽24m,最高点离水面8m,以水平线AB为x轴,AB的中点为原点建立坐标系.
①求此桥拱线所在抛物线的解析式.
②桥边有一浮在水面部分高4m,最宽处16m的河鱼餐船,如果从安全方面考虑,要求通过愚溪桥的船只,其船身在铅直方向上距桥内壁的距离不少于0.5m.探索此船能否通过愚溪桥?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•溧水县一模)七年级我们曾学过“两点之间线段最短”的知识,常可利用它来解决两条线段和最小的相关问题,下面是大家非常熟悉的一道习题:
如图1,已知,A,B在直线l的同一侧,在l上求作一点,使得PA+PB最小.
我们只要作点B关于l的对称点B′,(如图2所示)根据对称性可知,PB=PB'.因此,求AP+BP最小就相当于求AP+PB′最小,显然当A、P、B′在一条直线上时AP+PB′最小,因此连接AB',与直线l的交点就是要求的点P.
有很多问题都可用类似的方法去思考解决.
探究:
(1)如图3,正方形ABCD的边长为2,E为BC的中点,P是BD上一动点.连接EP,CP,则EP+CP的最小值是
5
5

运用:
(2)如图4,平面直角坐标系中有三点A(6,4)、B(4,6)、C(0,2),在x轴上找一点D,使得四边形ABCD的周长最小,则点D的坐标应该是
(2,0)
(2,0)


操作:
(3)如图5,A是锐角MON内部任意一点,在∠MON的两边OM,ON上各求作一点B,C,组成△ABC,使△ABC周长最小.(不写作法,保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,村庄A到公路BC的最短距离是AD,根据是
垂线段最短
垂线段最短

(2)如图2,建筑工人常在一根细绳上拴上一个重物,做成一个“铅锤”,挂铅锤的线总垂直于地面内的任何直线,当这条线贴近墙壁时,说明墙与地面垂直,请说出它的根据是
过一点有且只有一条直线与已知直线垂直
过一点有且只有一条直线与已知直线垂直

查看答案和解析>>

科目:初中数学 来源:同步题 题型:解答题

如图,在△ABC中,已知∠A=36°,AB=AC,人们常把这种等腰三角形叫做“黄金三角形”,它有许多优美的性质.若BD是△ABC的角平分线,请写出图中有所有的等腰三角形。并说明理由?

查看答案和解析>>

同步练习册答案