2014年“五一”小长假,岳阳楼、君山岛景区接待游客约120000人次,将120000用科学记数法表示为( )
|
| A. | 12×104 | B. | 1.2×105 | C. | 1.2×106 | D. | 12万 |
科目:初中数学 来源: 题型:
如图,在□ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H.
⑴求证:△ABE∽△ADF;
⑵若AG=AH,求证:四边形ABCD是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作
,已知
,如下图所示:如果
,
,则
。若D为AB的中点,
,若BE为AC上的中线,则用
,
表示
为__________________。
查看答案和解析>>
科目:初中数学 来源: 题型:
点A(-1,0)B(4,0)C(0,2)是平面直角坐标系上的三点。
① 如图1先过A、B、C作△ABC,然后在在
轴上方作一个正方形D1E1F1G1,
使D1E1在AB上, F1、G1分别在BC、AC上
② 如图2先过A、B、C作圆⊙M,然后在
轴上方作一个正方形D2E2F2G2,
使D2E2在
轴上 ,F2、G2在圆上
③ 如图3先过A、B、C作抛物线
,然后在
轴上方作一个正方形D3E3F3G3,
使D3E3在
轴上, F3、G3在抛物线上
请比较 正方形D1E1F1G1 , 正方形D2E2F2G2 , 正方形D3E3F3G3 的面积大小
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,AB是⊙O的直径,P为AB延长线上的一个动点,过点P作⊙O的切线,切点为C,连接AC,BC,作∠APC的平分线交AC于点D.
下列结论正确的是 (写出所有正确结论的序号)
①△CPD∽△DPA;
②若∠A=30°,则PC=
BC;
③若∠CPA=30°,则PB=OB;
④无论点P在AB延长线上的位置如何变化,∠CDP为定值.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,正比例函数y1=k1x和反比例函数y2=
的图象交于A(1,2),B两点,给出下列结论:
①k1<k2;
②当x<﹣1时,y1<y2;
③当y1>y1时,x>1;
④当x<0时,y2随x的增大而减小.
其中正确的有( )
![]()
|
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:初中数学 来源: 题型:
如图1,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与x轴平行,且与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M称为碟顶,点M到线段AB的距离称为碟高.
(1)抛物线y=
x2对应的碟宽
为 ;抛物线y=4x2对应的碟宽为 ;抛物线y=ax2(a>0)对应的碟宽为 ;抛物线y=a(x﹣2)2+3(a>0)对应的碟宽为 ;
(2)抛物线y=ax2﹣4ax﹣
(a>0)对应的碟宽为6,且在x轴上,求a的值;
(3)将抛物线y=anx2+bnx+cn(an>0)的对应准蝶形记为Fn(n=1,2,3…),定义F1,F2,…,Fn为相似准蝶形,相应的碟宽之比即为相似比.若Fn与Fn﹣1的相似比为
,且Fn的碟顶是Fn﹣1的碟宽的中点,现将(2)中求得的抛物线记为y1,其对应的准蝶形记为F1.
①求抛物线y2的表达式;
②若F1的碟高为h1,F2的碟高为h2,…Fn的碟高为hn,则hn= ,Fn的碟宽有端点横坐标为 ;F1,F2,…,Fn的碟宽右端点是否在一条直线上?若是,直接写出该直线的表达式;若不是,请说明理由.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com