【题目】已知A(2,0),直线y=(2-)x-2与x轴交于点F,与y轴交于点B,直线l∥AB且交y轴于点C,交x轴于点D,点A关于直线l的对称点为A′,连接AA′、A′D.直线l从AB出发,以每秒1个单位的速度沿y轴正方向向上平移,设移动时间为t.
(1)求点A′ 的坐标(用含t的代数式表示);
(2)求证:AB=AF;
(3)过点C作直线AB的垂线交直线y=(2-)x-2于点E,以点C为圆心CE为半径作⊙C,求当t为何值时,⊙C与△AA′D三边所在直线相切?
【答案】(1);(2)证明见解析;(3)1或.
【解析】试题分析:(1)由l∥AB得出∠ODC=∠OAB,再由点A(,0),求出∠ODC=∠OAB=30°,由点A关于直线l的对称点为A',求出A'点的坐标(用t的代数式表示);(2)通过点F的坐标,得出AF,在Rt△OAB中,OA=,OB=2,求出AB,得AB=AF;(3)先由直线l是点A和A'的对称轴得直线l是∠A'DA的平分线,即得点C到直线AD和A'D的距离相等,当⊙C与AD相切时,也一定与A'D相切,通过直角三角形求解.
试题解析:(1)∵直线与y轴交于点B,∴B(0, ).
∵l∥AB,∴∠ODC=∠OAB.
∵A(,0),∴. ∴∠ODC=∠OAB=30°.
∵BC=t,∴OC=2t. ∴OD=. ∴AD= .
∵点A关于直线l的对称点为A',∴A'D=AD= ,∠A'DA="60°." ∴△A'DA是等边三角形.
过点A'作A'H⊥AD于H,∴AH= ,A'H= .
∴A'点的坐标为.
(2)∵直线与x轴交于点F ,∴F.
又A(,0),∴AF=4.
在Rt△OAB中,OA=,OB=2,∴AB=4.
∴AB=AF.
(3)分两种情况讨论:
①如图1,当⊙C与AD(x轴)相切时,
∵直线l是点A和A'的对称轴,∴直线l是∠A'DA的平分线.
∴点C到直线AD和A'D的距离相等. ∴当⊙C与AD(x轴)相切时,也一定与A'D相切.
∵∠OAB=30°且AB=AF,∴∠ABF="15°." ∴∠CBF=75°.
∵CE⊥AB,∠OBA=60°,∴∠BCE="30°." ∴∠CEB=75°.
∴CB=CE.
∵⊙C与AD相切,∴OC="CE=CB." ∴t=1.
②如图2,当⊙C与AA'相切于点M时,CE=CB=CM,∴CM=t.
∵CM=DMCD,在Rt△OCD中,∠ODC=30°,OC=t2,∴CD=2t4.
∴,解得t=.
综上所述,当t=1或时,⊙C与△AA′D三边所在直线相切.
科目:初中数学 来源: 题型:
【题目】如图,边长为a的等边△ACB中,E是对称轴AD上一个动点,连EC,将线段EC绕点C逆时针旋转60°得到MC,连DM,则在点E运动过程中,DM的最小值是_____。
【答案】1.5
【解析】试题分析:取AC的中点G,连接EG,根据等边三角形的性质可得CD=CG,再求出∠DCF=∠GCE,根据旋转的性质可得CE=CF,然后利用“边角边”证明△DCF和△GCE全等,再根据全等三角形对应边相等可得DF=EG,然后根据垂线段最短可得EG⊥AD时最短,再根据∠CAD=30°求解即可.
解:如图,取AC的中点G,连接EG,
∵旋转角为60°,
∴∠ECD+∠DCF=60°,
又∵∠ECD+∠GCE=∠ACB=60°,
∴∠DCF=∠GCE,
∵AD是等边△ABC的对称轴,
∴CD=BC,
∴CD=CG,
又∵CE旋转到CF,
∴CE=CF,
在△DCF和△GCE中,
,
∴△DCF≌△GCE(SAS),
∴DF=EG,
根据垂线段最短,EG⊥AD时,EG最短,即DF最短,
此时∵∠CAD=×60°=30°,AG=AC=×6=3,
∴EG=AG=×3=1.5,
∴DF=1.5.
故答案为:1.5.
考点:旋转的性质;等边三角形的性质.
【题型】填空题
【结束】
19
【题目】分解因式:
(1) ; (2)9(m+n)2﹣16(m﹣n)2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请仔细阅读下面材料,然后解决问题:
在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”.例如: , ;当分子的次数小于分母的次数时,我们称之为“真分式”,例如: , .我们知道,假分数可以化为带分数,例如: ,类似的,假分式也可以化为“带分式”(整式与真分式和的形式),例如: .
(1)将分式化为带分式;
(2)当x取哪些整数值时,分式的值也是整数?
(3)当x的值变化时,分式的最大值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB=AC,∠A=36°,AB的中垂线交AC于点E,交AB于点D,下面4个结论:
①射线BE是∠ABC的平分线;②△BCE是等腰三角形;③△ABE是等腰三角形;④△ADE≌△BDE;
(1)判断其中正确的结论是哪几个?
(2)从你认为是正确的结论中选一个加以说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.
(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?若成立,请给出证明;若不成立,请说明理由.
(3)拓展与应用:如图3,D、E是D、A、E三点所在直线m上的两动点(D、A、E三点
互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数y=kx+b的图象经过点(﹣1,﹣5),且与正比例函数y=x的图象相交于点(2,a).
(1)求实数a的值及一次函数的解析式;
(2)求这两个函数图象与x轴所围成的三角形面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com