精英家教网 > 初中数学 > 题目详情
为了迎接“五·一”小长假的购物高峰,某运动品牌服装专卖店准备购进甲、乙两种服装,甲种服装每件进价l80元,售价320元;乙种服装每件进价l50元,售价280元.
(1)若该专卖店同时购进甲、乙两种服装共200件,恰好用去32400元,求购进甲、乙两种服装各多少件?
(2)该专卖店为使甲、乙两种服装共200件的总利润(利润=售价一进价)不少于26700元, 且不超过26800元,则该专卖店有几种进货方案?
(3)在(2)的条件下,专卖店准备在5月1日当天对甲种服装进行优惠促销活动,决定对甲种服装每件优惠a(0<a<20)元出售,乙种服装价格不变.那么该专卖店要获得最大利润应如何进货?
(1)购进甲、乙两种服装80件、120件(2)共有11种方案(3)购进甲种服装70件,乙种服装130件
解:(1)设购进甲种服装x件,则乙种服装是(200-x)件,
根据题意得:180x+150(200-x)=32400,
解得:x=80,200-x=200-80=120。
∴购进甲、乙两种服装80件、120件。
(2)设购进甲种服装y件,则乙种服装是(200-y)件,根据题意得:
,解得:70≤y≤80。
∵y是正整数,∴共有11种方案。
(3)设总利润为W元,则W=(140-a)y+130(200-y),即w=(10-a)y+26000。
①当0<a<10时,10-a>0,W随y增大而增大,
∴当y=80时,W有最大值,此时购进甲种服装80件,乙种服装120件。
②当a=10时,(2)中所有方案获利相同,所以按哪种方案进货都可以。
③当10<a<20时,10-a<0,W随y增大而减小,
∴当y=70时,W有最大值,此时购进甲种服装70件,乙种服装130件。
(1)设购进甲种服装x件,则乙种服装是(200-x)件,根据两种服装共用去32400元,即可列出方程,从而求解。
(2)设购进甲种服装y件,则乙种服装是(200-y)件,根据总利润(利润=售价-进价)不少于26700元,且不超过26800元,即可得到一个关于y的不等式组,解不等式组即可求得y的范围,再根据y是正整数整数即可求解。
(3)首先求出总利润W的表达式,然后针对a的不同取值范围进行讨论,分别确定其进货方案。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

武警战士乘一冲锋舟从地逆流而上,前往地营救受困群众,途经地时,由所携带的救生艇将地受困群众运回地,冲锋舟继续前进,到地接到群众后立刻返回地,途中曾与救生艇相遇.冲锋舟和救生艇距地的距离(千米)和冲锋舟出发后所用时间(分)之间的函数图象如图所示.假设营救群众的时间忽略不计,水流速度和冲锋舟在静水中的速度不变.

(1)请直接写出冲锋舟从地到地所用的时间.
(2)求水流的速度.
(3)冲锋舟将地群众安全送到地后,又立即去接应救生艇.已知救生艇与地的距离(千米)和冲锋舟出发后所用时间(分)之间的函数关系式为,假设群众上下船的时间不计,求冲锋舟在距离地多远处与救生艇第二次相遇?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

小明一家利用元旦三天驾车到某景点旅游.小汽车出发前油箱有油36L,行驶若干小时后,途中在加油站加油若干升.油箱中余油量Q(L)与行驶时间t(h)之间的关系如图所示。根据图象回答下列问题:

(1)小汽车行驶________h后加油, 中途加油__________L;
(2)求加油前油箱余油量Q与行驶时间t的函数关系式;
(3)如果加油站距景点200km,车速为80km/h,要到达目的地,油箱中的油是否够用?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

图为一位旅行者在早晨8时从城市出发到郊外所走的路程S(单位:千米)与时间t(单位:时)的变量关系的图象。根据图象回答问题:

(1)在这个变化过程中,自变量是____,因变量是______。
(2)9时,10时30分,12时所走的路程分别是多少?
(3)他休息了多长时间?
(4)他从休息后直至到达目的地这段时间的平均速度是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

周华早起锻炼,往返于家与体育场之间,离家的距离y(米)与时间x(分)的关系如图所示.回答下列问题:

(1)填空:周华从体育场返回行走的行走速度时___________米/分;
(2)刘明与周华同时出发,按相同的路线前往体育场,刘明离周华家的距离y(米)与时间x(分)的关系式为y=kx+400,当周华回到家时,刘明刚好到达体育场.
①直接在图中画出刘明离周华家的距离y(米)与时间x(分)的函数图象;
②填空:周华与刘明在途中共相遇___________次;
③求周华出发后经过多少分钟与刘明最后一次相遇.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

北京红螺食品公司生产的各种果脯一直受到大众的喜爱,尤其是该公司生产的桃脯特别香甜可口.但由于该公司某经销点存货有限,在2011年1到5月该经销点每月桃脯的销量(千克)与月份的关系如下表所示:
(月)
1
2
3
4
5
(千克)
150
75
50
37.5
30
 
6月份由于鲜桃的大量上市,红螺公司进行大量采购与加工,所以在6到12月该经销点每月桃脯的销量(千克)与月份的函数关系为:
已知在1到5月该经销点每千克桃脯的价格(元)与月份的函数关系为:;而在6到12月每千克桃脯的价格(元)与月份的关系满足如下函数图像;

(1)请观察图中的表格,用所学过的一次函数、反比例函数、二次函数的有关知识直接写出的函数关系式,根据如图所示的变换趋势,直接写出之间满足的一次函数关系式,并注明x的取值范围;
(2)试求出该经销点在哪个月桃脯的销售额最大,最大为多少元;
(3)为满足市场所需,红螺公司决定在2012年将此种桃脯作为海外出口的首推品,所以在今年1到4月该经销点在去年获得最大销售额的基础上,每月的总销量都上涨了,且其中的是用于出口,剩余部分由经销点国内销售,每月出口桃脯的售价每千克降低了,而国内销售的桃脯价格每千克上涨了,这样该经销点1到4月销售桃脯的总额为142560元,试求出的值.
(参考数据:, , , 

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

2011年夏季,河南小麦喜获丰收,现有甲种小麦1530吨,乙种小麦1150吨,需安排A、B两种不同规格的货厢50节把小麦全部运往上海.已知用一节A型货厢的运费是0.5万元,用一节B型货厢的运费是0.8万元.
(1)设运输这批小麦的总运费为y (万元),用A型货箱的节数为x (节),试写出y与x之间的函数关系式;
(2)已知甲种小麦35吨和乙种小麦15吨,可装满一节A型货厢;甲种小麦25吨和乙种小麦35吨可装满一节B型货厢,按此要求安排A、B两种货厢的节数,有哪几种运输方案?请你设计出来.
(3)利用函数的性质说明,在这些方案中,哪种方案总运费最少?最少运费是多少万元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将直线向上平移2个单位长度所得的直线的解析式是(    )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在直线上,若,则大小关系是(    )
A.B.C.D.无法确定

查看答案和解析>>

同步练习册答案