精英家教网 > 初中数学 > 题目详情

等腰三角形ABC中AB=AC=13cm,BC=10cm,以A为圆心,11cm为半径的圆与直线BC的位置关系是


  1. A.
    相离
  2. B.
    相切
  3. C.
    相交
  4. D.
    无法判断
A
分析:根据等腰三角形的三线合一和勾股定理,求得圆心到直线的距离,再根据数量关系进行判断.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.
解答:解:作AD⊥BC于D.
根据等腰三角形的三线合一,得BD=5cm;
再根据勾股定理得AD=12cm,
∵12cm>11cm
∴以11cm为半径的⊙A与BC所在直线的位置关系是相离.
故选:A.
点评:此题考查了直线和圆的位置关系与数量之间的联系.能够综合运用等腰三角形的性质和勾股定理求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,在等腰三角形ABC中,AB=AC=12cm,∠ABC=30°,那么底边上的高AD=
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

在等腰三角形ABC中,∠A=80°.
(1)若∠A是顶角,求∠B的度数;
(2)若∠B是顶角,求∠B的度数;
(3)若∠C是顶角,求∠B的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰三角形ABC中,AB=AC,AD是底边BC上的中线,若AB=10,BC=12,则中线AD的长度为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

在等腰三角形ABC中,AB=6cm,BC=10cm,那么AC=
6或10
6或10
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知等腰三角形△ABC中,AB=AC,∠C的平分线与AB边交于点P,M为△ABC的内切圆⊙I与BC边的切点,作MD∥AC,交⊙I于点D.
证明:PD是⊙I的切线.

查看答案和解析>>

同步练习册答案