精英家教网 > 初中数学 > 题目详情

【题目】如图所示,已知抛物线与一次函数的图象相交于两点,点是抛物线上不与重合的一个动点.

1)请求出的值;

2)当点在直线上方时,过点轴的平行线交直线于点,设点的横坐标为的长度为,求出关于的解析式;

3)在(2)的基础上,设面积为,求出关于的解析式,并求出当取何值时,取最大值,最大值是多少?

【答案】1;(2;(3)当时,取最大值,最大值为

【解析】

1)把AB坐标分别代入抛物线和一次函数解析式即可求出abk的值;(2)根据abk的值可得抛物线和直线AB的解析式,根据P点横坐标为m可用m表示PC两点坐标,根据两点间距离公式即可得Lm的关系式;(3)如图,作ADPCDBEPCE,根据,可用m表示出S,配方求出二次函数的最值即可得答案.

1)∵点A-1-1)在抛物线图象上,

解得:

∵点A-1-1)、B2-4)在一次函数的图象上,

解得

2)∵a=-1

∴直线的解析式为,抛物线的解析式为

∵点P在抛物线上,点C在直线AB上,点P横坐标为mPC//y轴,

关于的解析式:

3)如图,作ADPCDBEPCE

AD=m+1BE=2-m

PC·AD+PC·BE

配方得:

∴当时,取最大值,最大值为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数,函数与自变量的部分对应值如下表:

—4

—3

—2

—1

0

3

—2

—5

—6

—5

则下列判断中正确的是( )

A. 抛物线开口向下 B. 抛物线与轴交于正半轴

C. 方程的正根在1与2之间 D. 时的函数值比时的函数值大

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2+bxa0)经过原点O和点A20),B(﹣12)三点.

1)写出抛物线的对称轴和顶点坐标;

2)点(x1y1),(x2y2)在抛物线上,若x1x21,比较y1y2的大小,并说明理由;

3)点C与点B关于抛物线的对称轴对称,求直线AC的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)x轴的正半轴交于AC两点(A在点C右侧),与y轴正半轴交于点B,连结BC,将BOC沿直线BC翻折,若点O恰好落在线段AB上,则称该抛物线为折点抛物线,下列抛物线是折点抛物线的是( )

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=18AD=12,点M是边AB的中点,连结DMDMAC交于点G,点EF分别是CDDG上的点,连结EF

(1)求证:CG=2AG.

(2)DE=6,当以EFD为顶点的三角形与CDG相似时,求EF的长.

(3)若点E从点D出发,以每秒2个单位的速度向点C运动,点F从点G出发,以每秒1个单位的速度向点D运动.当一个点到达,另一个随即停止运动.在整个运动过程中,求四边形CEFG的面积的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某新型高科技商品,每件的售价比进价多6元,5件的进价相当于4件的售价,每天可售出200件,经市场调查发现,如果每件商品涨价1元,每天就会少卖5件.

1)该商品的售价和进价分别是多少元?

2)设每天的销售利润为w元,每件商品涨价x元,则当售价为多少元时,该商品每天的销售利润最大,最大利润为多少元?

3)为增加销售利润,营销部推出了以下两种销售方案:方案一:每件商品涨价不超过8元;方案二:每件商品的利润至少为24元,请比较哪种方案的销售利润更高,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=x与双曲线y=交于A、B两点,且点A的横坐标为

(1)求k的值;

(2)若双曲线y=上点C的纵坐标为3,求△AOC的面积;

(3)在坐标轴上有一点M,在直线AB上有一点P,在双曲线y=上有一点N,若以O、M、P、N为顶点的四边形是有一组对角为60°的菱形,请写出所有满足条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知抛物线x轴交于A-10),B30)两点,与y轴交于点C

(1)求该抛物线的解析式;

(2)如图①,若点D是抛物线上一动点,设点D的横坐标为m0m3),连接CDBDBCAC,当△BCD的面积等于△AOC面积的2倍时,求m的值;

(3)若点N为抛物线对称轴上一点,请在图②中探究抛物线上是否存在点M,使得以BCMN为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2017湖北省鄂州市)小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走3米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端E的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°.已知A点离地面的高度AB=2米,∠BCA=30°,且BCD三点在同一直线上.

(1)求树DE的高度;

(2)求食堂MN的高度.

查看答案和解析>>

同步练习册答案