精英家教网 > 初中数学 > 题目详情
10.函数y=ax2+a与y=$\frac{a}{x}$(a≠0)在同一坐标系中的大致图象是(  )
A.B.C.D.

分析 先根据二次函数的开口方向确定二次项系数a的符号,看它是否满足反比例函数的图象,及二次函数与y轴的交点的位置.

解答 解:A、二次函数开口向下,则a<0,与y轴交于正半轴,所以a>0,所以选项A不正确;
B、二次函数开口向下,则a<0,所以y=$\frac{a}{x}$(a≠0)在一、三象限,所以选项B不正确;
C、二次函数开口向上,则a>0,与y轴交于负半轴,所以a<0,所以选项C不正确;
D、二次函数开口向下,则a<0,且交于y轴负半轴,所以y=$\frac{a}{x}$(a≠0)在二、四象限,所以选项D正确;
故选D.

点评 本题考查了二次函数的图象与性质及反比例函数的图象与性质,明确二次函数的开口方向确定a的正负:①开口向下→a<0,②开口向上→a>0,熟记二次函数与y轴的交点确定常数项c的值:①交于y轴正半轴→c>0,②交于y轴负半轴→c<0,③交于原点→c=0;反比例函数中,当k>0,双曲线的两支分别位于第一、第三象限,当k<0,双曲线的两支分别位于第二、第四象限.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.如图,在平面直角坐标系xOy中,抛物线y=ax2+1经过点A(4,-3),顶点为点B,点P为抛物线上的一个动点,l是过点(0,2)且垂直于y轴的直线,过P作PH⊥l,垂足为H,连接PO.
(1)求抛物线的解析式,并写出其顶点B的坐标;
(2)①当P点运动到A点处时,计算:PO=5,PH=5,由此发现,PO=PH(填“>”、“<”或“=”);
②当P点在抛物线上运动时,猜想PO与PH有什么数量关系,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.一元二次方程x2=x的解为(  )
A.x=0B.x=1C.x=0且x=1D.x=0或x=1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知抛物线y=-x2+mx+m+1与x轴交于A、B两点(A在B点的右侧),与y轴交于点C.
(1)抛物线总经过一个定点D,请直接写出点D的坐标.
(2)已知⊙P是以AC为直径的圆,动点Q在抛物线上,当m=3时,是否存在点Q,使得直线AQ与⊙P相切,若存在,求出点Q的坐标;若不存在,请说明理由.
(3)当m=2时,抛物线的顶点为E,对称轴EF与AC交于点H,与x轴交于点F,设过H的直线与抛物线交于M(x1,y2)、N(x2,y2),试判断当|x1-x2|的值最小时,直线MN与x轴的位置关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.一个三位数,若个位数是a,十位数是b,百位数是c,则这个三位数是(  )
A.a+bB.abcC.1000a+10b+cD.100c+10b+a

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列说法中正确的是(  )
A.0是最小的有理数
B.最大的负有理数是-1
C.任何有理数的绝对值都是正数
D.如果两个数互为相反数,那么它们的绝对值相等

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.一个圆内接正方形的边心距为r,求该圆的外切正六边形的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,△ABC是等边三角形,AB=2,动点P从点B出发,以1cm/s速度沿射线BC运动,连接AP,以AP为边向其右侧作等边三角形APQ,连按CQ,设点P的运动时间为t(s).
(1)当点P在边BC上时,求CQ的长(用含t的式子表示);
(2)用含t的式子表示CP的长;
(3)当以点A、P、C、Q为顶点的四边形是轴对称图形时,直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知△ABC中,∠B=90°,角平分线AD、CF相交于E,求∠AEC的度数.

查看答案和解析>>

同步练习册答案