精英家教网 > 初中数学 > 题目详情
如图,⊙O2过⊙O1直径AB的两端,DB为⊙O2的直径,交⊙O1于C点.点Q在⊙O1上,连接AQ并延长精英家教网交DB的延长线于点P,且PA•PC=PQ•PD.
(1)求证:PA是⊙O2的切线;
(2)若AQ=6cm,∠P=30°,求PB的长.
分析:(1)要证PA是⊙O的切线,只要证明其符合切线定理即可;
(2)通过∠P的余弦得出PB的长.
解答:(1)证明:连接AD,AO2,CQ,BQ;
∵在⊙O1中,PQ•PA=PB•PC,
∵PA•PC=PQ•PD,
∴PA•PA=PB•PD,
∴PA是⊙O2的切线;

(2)解:∵BAP=∠D=∠P=30°,AQ=PQ,
∴BP=6÷cos30°=4
3
点评:本题考查了切线的判定.要证某线是圆的切线,连接圆心与这点(即为半径),根据切线的性质得出.同时考查了三角函数的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,⊙O2过⊙O1的圆心O1且与⊙O1内切于点P.弦AB切⊙O2于点C,PA、PB分别与⊙精英家教网O2交于D、E两点,延长PC交⊙O1于点F.
求证:
(1)BC2=BE•BP;
(2)∠1=∠2;
(3)CF2=BE•AP.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,⊙O2过⊙O1的圆心O1,且与⊙O1内切于点P,弦AB切⊙O2于点C,PA、PB分别与⊙O2交于D、E,延长PC交⊙O1于点F,连接CD、CE、AF.
求证:(1)PF平分∠APB;(2)CP2=2PD•EP.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,⊙O2过⊙O1的圆心O1,且与⊙O1内切于点P,弦AB切⊙O2于点C,PA、PB分别与⊙O2交于D、E,延长PC交⊙O1于点F,连接CD、CE、AF.
求证:(1)PF平分∠APB;(2)CP2=2PD•EP.

查看答案和解析>>

科目:初中数学 来源:2001年全国中考数学试题汇编《圆》(06)(解析版) 题型:解答题

(2001•山东)如图,⊙O2过⊙O1直径AB的两端,DB为⊙O2的直径,交⊙O1于C点.点Q在⊙O1上,连接AQ并延长交DB的延长线于点P,且PA•PC=PQ•PD.
(1)求证:PA是⊙O2的切线;
(2)若AQ=6cm,∠P=30°,求PB的长.

查看答案和解析>>

同步练习册答案