精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CDE,其中∠DCE=90°,连接BE.
(1)求证:△ACD≌△BCE;
(2)若AB=3cm,则BE=
6
6
cm.
(3)BE与AD有何位置关系?请说明理由.
分析:(1)根据等腰直角三角形的性质得到CD=CE,CA=CB,然后利用“SAS”可判断△ACD≌△BCE;
(2)根据全等三角形的性质得到AD=BE,而DB=AB=3cm,所以BE=6cm;
(3)根据全等三角形的性质得到∠1=∠2,而∠3=∠4,然后根据三角形内角和定理即可得到∠EBD=∠ECD=90°.
解答:(1)证明:∵△ACB和△DCE都是等腰直角三角形,
∴CD=CE,CA=CB,
∵∠ACB=90°,∠DCE=90°,
∴∠ECD+∠DCB=∠DCB+∠ACB,即∠ECB=∠ACD,
在△ACD和△BCE中,
CD=CE
∠ACD=∠BCE
CA=CB

∴△ACD≌△BCE(SAS);

(2)解:∵△ACD≌△BCE,
∴AD=BE,
∵DB=AB=3cm,
∴BE=2×3cm=6cm;

(3)解:BE与AD垂直.理由如下:
∵△ACD≌△BCE,
∴∠1=∠2,
而∠3=∠4,
∴∠EBD=∠ECD=90°,
∴BE⊥CD.
故答案为6.
点评:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等腰直角三角形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案