【题目】如图,在四边形ABCD中,AD∥BC, AB=AC,BE=CE=AD.
(1)求证:四边形ECDA是矩形;
(2)当△ABC是什么类型的三角形时,四边形ECDA是正方形?请说明理由.
【答案】(1)、证明过程见解析;(2)、当△ABC是等腰直角三角形时;证明过程见解析.
【解析】
试题分析:(1)、根据AD//EC且AD=EC得到平行四边形,然后根据AB=AC,BE=CE得出∠AEC=90°,则得到矩形;(2)、根据等腰直角三角形的性质得出AE=EC,从而得到正方形.
试题解析:(1)、在四边形AECD中,AD//EC且AD=EC. ∴ 四边形AECD是平行四边形
∵AB=AC,BE=CE ∴AE⊥BC ,∠AEC=90° ∴四边形AECD是矩形
、当△ABC是等腰直角三角形时,四边形ECDA是正方形
∵△ABC等腰直角三角形时,∠AEC=Rt∠,又因BE=CE ∴AE = =CE
又∵四边形AECD是矩形 ∴四边形ECDA是正方形
科目:初中数学 来源: 题型:
【题目】以下是某校九年级10名同学参加学校演讲比赛的统计表.则这组数据的众数和中位数分别为( ).
成绩/分 | 80 | 85 | 90 | 95 |
人数/人 | 1 | 3 | 4 | 2 |
A.85,87.5B.85,85C.85,90D.90,90
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把抛物线y=-x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的表达式为( )
A. y=-x2+2x+2 B. y=-x2-2x+2 C. y=-x2+2x-4 D. y=-x2-2x-4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校课外兴趣小组在本校学生中开展对“消防安全知识”了解情况的专题调查活动,采取随机抽样的方式进行问卷调查,调查的结果分为A,B,C,D四类.其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,划分类别后的数据整理如下表格:
(1)根据表中数据,问在关于调查结果的扇形统计图中,类别为B的学生数所对应的扇形圆心角的度数为多少?
(2)若A类学生数比D类学生数的2倍少4,求表中a,m的值;
(3)若该校有学生955名,根据调查结果,估计该校学生中类别为C的人数约为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,长方形ABCD中,∠A=∠B=∠C=∠D=90°,AB=CD,AD=BC,且+|BC﹣6|=0,点P、Q分别是边AD、AB上的动点.
(1)求BD的长(长度单位是cm);
(2)如图2,若点P从D点出发,以2cm/s的速度沿DA向点A运动,点Q从B点出发,以1cm/s的速度沿BA向点A运动,P、Q同时出发,一个点到达终点时,两点同时停止运动;设运动时间为x,用含x的代数式表示△CPQ的面积S.
(3)如图3,在BC上取一点E,使EB=1,那么当△EPC是等腰三角形时,请直接写出△EPC的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我区积极开展“体育大课间”活动,引导学生坚持体育锻炼.某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步,D:足球四种运动项目.为了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题:
(1)求样本中最喜欢B项目的人数百分比和其所在扇形图中的圆心角的度数;
(2)请把条形统计图补充完整;
(3)已知该校有1000人,请根据样本估计全校最喜欢足球的人数是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com