精英家教网 > 初中数学 > 题目详情
20.(1)猜想:试猜想a2+b2与2ab的大小关系,并说明理由;
(2)应用:已知x-$\frac{1}{x}=5({x≠0})$,求x2+$\frac{1}{x^2}$的值;
(3)拓展:代数式x2+$\frac{1}{x^2}$是否存在最大值或最小值,不存在,请说明理由;若存在,请求出最小值.

分析 (1)判断两式大小,利用完全平方公式验证即可;
(2)已知等式两边平方,利用完全平方公式化简,整理求出所求式子的值即可;
(3)利用得出的规律确定出代数式的最小值即可.

解答 解:(1)猜想a2+b2≥2ab,理由为:
∵a2+b2-2ab=(a-b)2≥0,
∴a2+b2≥2ab;
(2)把x-$\frac{1}{x}$=5两边平方得:(x-$\frac{1}{x}$)2=x2+$\frac{1}{{x}^{2}}$-2=25,
则x2+$\frac{1}{x^2}$=27;  
(3)x2+$\frac{1}{x^2}$≥2,即最小值为2.

点评 此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.问题1:
填表:计算代数式的值.
 a-$\frac{5}{2}$-2-1 0 1 2
 a2-2a+1 12.259310 1
问题2:
你可以再换几个数再试试(不需要写出来),先观察表格再归纳,你发现a2-2a+1的值有什么规律?把它写出来,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.我们知道13+23+33+43+…+n3=(1+2+3+4+…+n)2,你还可以检验以下两个等式成立:
13+23+23+43=(1+2+2+4)2
13+23+23+33+43+63=(1+2+2+3+4+6)2
类似后面两个的等式,你能再写一个出来吗?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.(1)如图1,在平面直角坐标系xOy中,点A、B分别为x轴正半轴和y轴正半轴上的两个定点,点C为x轴上的一个动点(与点O,A不重合),分别作∠OBC和∠ACB的角平分线,两角平分线所在直线交于点E,直接问答∠BEC的度数及点C所在的相应位置.
(2)如图2,在平面直角坐标系xOy中,△FGH的一个顶点F在y轴的负半轴上,射线FO平分∠GFH,过点H的直线MN交x轴于点M,满足∠MHF=∠GHN,过点H作HP⊥MN交x轴于点P,请探究∠MPH与∠G的数量关系,并写出简要证明思路.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.计算
(1)13.7×$\frac{17}{31}$+19.8×$\frac{17}{31}$-2.5×$\frac{17}{31}$
(2)(3x+y-2)(3x-y+2)
(3)8502-1700×848+8482

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.计算:
(1)a(b-a)-b(a-b)
(2)(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)…(1-$\frac{1}{201{6}^{2}}$)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图①,AD平分∠BAC,AE⊥BC,∠B=40°,∠C=60°
(1)求∠DAE的度数;
(2)如图②,若把“AE⊥BC”变成“点F在DA的延长线上,FE⊥BC”,其他条件不变,求∠DFE的度数;
(3)如图③,若把“AE⊥BC”变成“AE平分∠BEC”,其他条件不变,∠DAE的大小是否变化,并请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.某校准备组织290名学生进行野外考察活动,行李件数比学生人数的一半还少45.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车最多能载30人和20件行李.
(1)求行李有多少件?
(2)现计划租用甲种汽车x辆,请你帮学校设计所有可能的租车方案.
(3)如果甲、乙两种汽车每辆的租车费分别是2000元、1800元,请你选择最省钱的一种租车方案,并求出至少的费用是多少元.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,某船在A处测得灯塔B在北偏东30°方向,现该船从A处出发以北每小时24海里的速度向正北方向航行15分钟后到达C处,在C处测得灯塔B在北偏东45°的方向,求A到灯塔B的距离.

查看答案和解析>>

同步练习册答案