分析 (1)根据平分线的定义证明即可;
(2)应用折叠对称的性质和SAS得到△AEF≌△AEC,在Rt△DFE中应用勾股定理而证明.
(3)当135°<α<180°时,等量关系BD2+CE2=DE2仍然成立.可以根据(2)的方法进行证明即可.
解答 证明:(1)∵∠BAC=90°,∠DAE=45°,
∴∠BAD+∠EAC=90°-45°=45°,∠DAM+∠MAE=45°,
∵AD平分∠BAM,
∴∠BAD=∠DAM,
∴∠MAE=∠EAC,
∴AE平分∠MAC;
(2)将△ABD沿AD对折得到△AFD,连接EF,![]()
由对折可得:∠BAD=∠FAD,AB=AF,BD=DF,
∵∠BAD=∠FAD,
∴由(1)可知,∠CAE=∠FAE.
在△AEF和△AEC中,
$\left\{\begin{array}{l}{AF=AC}\\{∠FAE=∠CAE}\\{AE=AE}\end{array}\right.$,
∴△AEF≌△AEC(SAS),
∴CE=FE,∠AFE=∠C=45°.
∴∠DFE=∠AFD+∠AFE=90°.
在Rt△DFE中,DF2+FE2=DE2,
∴BD2+CE2=DE2.
(3)当135°<α<180°时,等量关系BD2+CE2=DE2仍然成立,
如图2,设AB与EF相交于点G.![]()
∵将△ABD沿AD所在的直线对折得到△ADF,
∴AF=AB,∠AFD=∠ABD=135°,∠BAD=∠FAD.
又∵AC=AB,
∴AF=AC.
又∵∠CAE=90°-∠BAE=90°-(45°-∠BAD)=45°+∠BAD=45°+∠FAD=∠FAE.
∴∠CAE=∠FAE.
在△AEF和△AEC中,
$\left\{\begin{array}{l}{AF=AC}\\{∠FAE=∠CAE}\\{AE=AE}\end{array}\right.$,
∴△AEF≌△AEC(SAS),
∴CE=FE,∠AFE=∠C=45°.
∴∠DFE=∠AFD-∠AFE=∠135°-∠C=135°-45°=90°.
∴∠DFE=90°.
在Rt△DFE中,DF2+FE2=DE2,
∴BD2+CE2=DE2.
点评 本题考查了角平分线的定义,旋转的性质,折叠对称的性质,全等三角形的判定和性质等知识点,关键是根据折叠对称的性质和SAS得到△AEF≌△AEC.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | x2-4x=3 | B. | $\frac{y}{2}$+2y=3 | C. | x+2y=1 | D. | x-1=$\frac{1}{x}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com