精英家教网 > 初中数学 > 题目详情

【题目】小红在计算时,拿出 1 张等边三角形纸片按如图所示方式进行操作.

①如图1,把 1 个等边三角形等分成 4 个完全相同的等边三角形,完成第 1 次操作;

②如图 2,再把①中最上面的三角形等分成 4 个完全相同的等边三角形,完成第 2 次操作;

③如图 3,再把②中最上面的三角形等分成 4 个完全相同的等边三角形,······依次重复上述操作.可得的值最接近的数是(

A.B.C.D.1

【答案】A

【解析】

设大三角形的面积为1,先求原算式3倍的值,将其值转化为三角形的面积和,利用面积求解.

解:设大三角形的面积为1,则第一次操作后每个小三角形的面积为,第二次操作后每个小三角形的面积为,第三次操作后每个小三角形面积为,第四次操作后每个小三角形面积为,……第2020次操作后每个小三角形面积为,算式相当于图1中的阴影部分面积和.将这个算式扩大3倍,得,此时该算式相当于图2中阴影部分面积和,这个和等于大三角形面积减去1个剩余空白小三角形面积,即,则原算式的值为.

所以的值最接近.

故选:A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.当轿车到达乙地后,马上沿原路以CD段速度返回,则货车从甲地出发_______小时后与轿车相遇(结果精确到0.01

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,BD是它的一条对角线,过AC两点分别作EF为垂足.

1)如图,求证:

2)如图,连接AC,设ACBD交于点O,若.在不添加任何辅助线的情况下,请直接写出图中的所有长度是OE长度2倍的线段.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某文化用品商店用1 000元购进一批晨光套尺,很快销售一空;商店又用1 500元购进第二批该款套尺,购进时单价是第一批的倍,所购数量比第一批多100套.

1)求第一批套尺购进时单价是多少?

2)若商店以每套4元的价格将这两批套尺全部售出,可以盈利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)化简求值:(2+a)(2-a)+a(a-2b)+3a5b÷(-a2b)4,其中ab=-.

(2)因式分解:a(n-1)2-2a(n-1)+a.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A是双曲线y=在第一象限上的一动点,连接AO并延长交另一分支于点B,以AB为斜边作等腰RtABC,点C在第二象限,随着点A的运动,点C的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC在平面直角坐标系xOy中的位置如图所示.

(1)作ABC关于点C成中心对称的A1B1C1

(2)将A1B1C1向右平移3个单位,作出平移后的A2B2C2

(3)在x轴上求作一点P,使PA1+PC2的值最小,并求最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+bx+3a0)经过点A10),B0),且与y轴相交于点C

(1)求这条抛物线的表达式;

(2)求∠ACB的度数;

(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DEAC,当△DCE与△AOC相似时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

同步练习册答案