精英家教网 > 初中数学 > 题目详情
(2013•福州质检)如图,边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是
1.5
1.5
分析:取AC的中点G,连接EG,根据等边三角形的性质可得CD=CG,再求出∠DCF=∠GCE,根据旋转的性质可得CE=CF,然后利用“边角边”证明△DCF和△GCE全等,再根据全等三角形对应边相等可得DF=EG,然后根据垂线段最短可得EG⊥AD时最短,再根据∠CAD=30°求解即可.
解答:解:如图,取AC的中点G,连接EG,
∵旋转角为60°,
∴∠ECD+∠DCF=60°,
又∵∠ECD+∠GCE=∠ACB=60°,
∴∠DCF=∠GCE,
∵AD是等边△ABC的对称轴,
∴CD=
1
2
BC,
∴CD=CG,
又∵CE旋转到CF,
∴CE=CF,
在△DCF和△GCE中,
CE=CF
∠DCF=∠GCE
CD=CG

∴△DCF≌△GCE(SAS),
∴DF=EG,
根据垂线段最短,EG⊥AD时,EG最短,即DF最短,
此时∵∠CAD=
1
2
×60°=30°,AG=
1
2
AC=
1
2
×6=3,
∴EG=
1
2
AG=
1
2
×3=1.5,
∴DF=1.5.
故答案为:1.5.
点评:本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•福州质检)一元二次方程x2+4=0根的情况是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•福州质检)已知一个函数中,两个变量x与y的部分对应值如下表:
x -2-
3
-2+
3
2
-1
2
+1
y -2+
3
-2-
3
2
+1
2
-1
如果这个函数图象是轴对称图形,那么对称轴可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•福州质检)如图,由6个形状、大小完全相同的小矩形组成矩形网格.小矩形的顶点称为这个矩形网格的格点.已知小矩形较短边长为1,△ABC的顶点都在格点上.
(1)格点E、F在BC边上,
BE
AF
的值是
1
2
1
2

(2)按要求画图:找出格点D,连接CD,使∠ACD=90°;
(3)在(2)的条件下,连接AD,求tan∠BAD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•福州质检)如图,Rt△ABC中,∠C=90°,AC=BC=8,DE=2,线段DE在AC边上运动(端点D从点A开始),速度为每秒1个单位,当端点E到达点C时运动停止.F为DE中点,MF⊥DE交AB于点M,MN∥AC交BC于点N,连接DM、ME、EN.设运动时间为t秒.
(1)求证:四边形MFCN是矩形;
(2)设四边形DENM的面积为S,求S关于t的函数解析式;当S取最大值时,求t的值;
(3)在运动过程中,若以E、M、N为顶点的三角形与△DEM相似,求t的值.

查看答案和解析>>

同步练习册答案