精英家教网 > 初中数学 > 题目详情
6.若x>y,则下列式子中错误的是(  )
A.x+$\frac{1}{3}$>y+$\frac{1}{3}$B.x-3>y-3C.$\frac{x}{3}$>$\frac{y}{3}$D.-3x>-3y

分析 根据不等式的基本性质,进行判断即可.

解答 解:A、根据不等式的性质1,可得x+$\frac{1}{3}$>y+$\frac{1}{3}$,故A选项正确;
B、根据不等式的性质1,可得x-3>y-3,故B选项正确;
C、根据不等式的性质2,可得$\frac{x}{3}$>$\frac{y}{3}$,故C选项正确;
D、根据不等式的性质3,可得-3x<-3y,故D选项错误;
故选:D.

点评 本题考查了不等式的性质:
(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.
(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.
(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.保障房建设是民心工程,某市从2009年加快保障房建设工程.现统计该市从2009年到2013年这5年新建保障房情况,绘制成如图1、2所示的折线统计图和不完整的条形统计图.
(1)小颖看了统计图后说:“该市2012年新建保障房的套数比2011年少了.”你认为小颖的说法正确吗?请说明理由;
(2)求2012年新建保障房的套数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,AOE是一条直线,图中小于平角的角共有(  )
A.4个B.8个C.9个D.10个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去.则第2016个正方形的边长为($\sqrt{2}$)2015

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.正方形ABCD中,AB=24,AC交BD于O,则△ABO的周长是24+24$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.为了解某一路口某一时段的汽车流量,小明同学10天中在同一时段统计通过该路口的汽车数量(单位:辆),将统计结果绘制成如下折线统计图:

由此估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为12 天.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.在我市举行的中学生春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:这些运动员跳高成绩的众数为(  )
成绩(m)1.501.601.651.701.751.80
人数124332
A.1.65B.1.70C.1.80D.4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,AD是△ABC的高,BE是△ABC的内角平分线,BE、AD相交于点F,已知∠BAD=40°,则∠BFD=65°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图1,在Rt△ABC中,∠A=90°,AB=AC,BC=4$\sqrt{2}$,另有一等腰梯形DEFG(GF∥DE)的底边DE与BC重合,两腰分别落在AB、AC上,且G、F分别是AB、AC的中点.
(1)直接写出△AGF与△ABC的面积的比值;
(2)操作:固定△ABC,将等腰梯形DEFG以每秒1个单位的速度沿BC方向向右运动,直到点D与点C重合时停止.设运动时间为x秒,运动后的等腰梯形为DEF′G′(如图2).
①探究1:在运动过程中,四边形CEF′F能否是菱形?若能,请求出此时x的值;若不能,请说明理由.
②探究2:设在运动过程中△ABC与等腰梯形DEFG重叠部分的面积为y,求y与x的函数关系式.

查看答案和解析>>

同步练习册答案