精英家教网 > 初中数学 > 题目详情
某公司投资700万元购甲、乙两种产品的生产技术和设备后,进行这两种产品加工.已知生产甲种产品每件还需成本费30元,生产乙种产品每件还需成本费20元.经市场调研发现:甲种产品的销售单价为x(元),年销售量为y(万件),当35≤x<50时,y与x之间的函数关系式为y=20﹣0.2x;当50≤x≤70时,y与x的函数关系式如图所示,乙种产品的销售单价,在25元(含)到45元(含)之间,且年销售量稳定在10万件.物价部门规定这两种产品的销售单价之和为90元.

(1)当50≤x≤70时,求出甲种产品的年销售量y(万元)与x(元)之间的函数关系式.
(2)若公司第一年的年销售量利润(年销售利润=年销售收入﹣生产成本)为W(万元),那么怎样定价,可使第一年的年销售利润最大?最大年销售利润是多少?
(3)第二年公司可重新对产品进行定价,在(2)的条件下,并要求甲种产品的销售单价x(元)在50≤x≤70范围内,该公司希望到第二年年底,两年的总盈利(总盈利=两年的年销售利润之和﹣投资成本)不低于85万元.请直接写出第二年乙种产品的销售单价m(元)的范围.
(1)(50≤x≤70)。
(2)甲、乙两种产品定价均为45元时,第一年的年销售利润最大,最大年销售利润是415万元。
(3)30≤m≤40。

分析:(1)设y与x的函数关系式为y=kx+b(k≠0),然后把点(50,10),(70,8)代入求出k、b的值即可得解。
(2)先根据两种产品的销售单价之和为90元,根据乙种产品的定价范围列出不等式组求出x的取值范围是45≤x≤65,然后分45≤<50,50≤x≤70两种情况,根据销售利润等于两种产品的利润之和列出W与x的函数关系式,再利用二次函数的增减性确定出最大值,从而得解。
(3)用第一年的最大利润加上第二年的利润,然后根据总盈利不低于85万元列出不等式,整理后求解即可:
根据题意得,
由W=85,则,解得x1=20,x2=60.
又由题意知,50≤x≤70,根据函数性质分析,50≤x≤60,即50≤90-m≤60,∴30≤m≤40。 
解:(1)设y与x的函数关系式为y=kx+b(k≠0),
∵函数图象经过点(50,10),(70,8),
,解得
∴甲种产品的年销售量y(万元)与x(元)之间的函数关系式为(50≤x≤70)。
(2)∵乙种产品的销售单价在25元(含)到45元(含)之间,
,之得45≤x≤65。
①当45≤x<50时,

∵﹣0.2<0,∴x>40时,W随x的增大而减小。
∴当x=45时,W有最大值,(万元)。
②50≤x≤70时,

∵﹣0.1<0,∴x>40时,W随x的增大而减小。
当x=50时,W有最大值,(万元)。
综上所述,当x=45,即甲、乙两种产品定价均为45元时,第一年的年销售利润最大,最大年销售利润是415万元。
(3)30≤m≤40。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某游泳池有水4000m3,先放水清洗池子.同时,工作人员记录放水的时间x(单位:分钟)与池内水量y(单位:m3) 的对应变化的情况,如下表:
时间x(分钟)

10
20
30
40

水量y(m3

3750
3500
3250
3000

(1)根据上表提供的信息,当放水到第80分钟时,池内有水多少m3
(2)请你用函数解析式表示y与x的关系,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.

(1)求C点坐标;
(2)求直线MN的解析式;
(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

M(1,a)是一次函数与反比例函数图象的公共点,若将一次函数的图象向下平移4个单位,则它与反比例函数图象的交点坐标为     

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

为预防甲型H1N1流感,某校对教室喷洒药物进行消毒.已知喷洒药物时每立方米空气中的含药量y(毫克)与时间x(分钟)成正比,药物喷洒完后,y与x成反比例(如图所示).现测得10分钟喷洒完后,空气中每立方米的含药量为8毫克.

(1)求喷洒药物时和喷洒完后,y关于x的函数关系式;
(2)若空气中每立方米的含药量低于2毫克学生方可进教室,问消毒开始后至少要经过多少分钟,学生才能回到教室?
(3)如果空气中每立方米的含药量不低于4毫克,且持续时间不低于10分钟时,才能杀灭流感病毒,那么此次消毒是否有效?为什么?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

“五•一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a分钟只开放了两个检票口.某一天候车室排队等候检票的人数y(人)与检票时间x(分钟)的关系如图所示.

(1)求a的值.
(2)求检票到第20分钟时,候车室排队等候检票的旅客人数.
(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

列函数中,y随x的增大而减少的函数是【   】
A.y=2x+8B.y=﹣2+4xC.y=﹣2x+8D.y=4x

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知点P(a,b)在一次函数y=4x+3的图象上,则代数式4a﹣b﹣2的值等于   

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将一次函数图像向下平移个单位,与双曲线交于点A,与轴交于点B,则=(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案