分析:(1)设y与x的函数关系式为y=kx+b(k≠0),然后把点(50,10),(70,8)代入求出k、b的值即可得解。
(2)先根据两种产品的销售单价之和为90元,根据乙种产品的定价范围列出不等式组求出x的取值范围是45≤x≤65,然后分45≤<50,50≤x≤70两种情况,根据销售利润等于两种产品的利润之和列出W与x的函数关系式,再利用二次函数的增减性确定出最大值,从而得解。
(3)用第一年的最大利润加上第二年的利润,然后根据总盈利不低于85万元列出不等式,整理后求解即可:
根据题意得,
,
由W=85,则
,解得x
1=20,x
2=60.
又由题意知,50≤x≤70,根据函数性质分析,50≤x≤60,即50≤90-m≤60,∴30≤m≤40。
解:(1)设y与x的函数关系式为y=kx+b(k≠0),
∵函数图象经过点(50,10),(70,8),
∴
,解得
。
∴甲种产品的年销售量y(万元)与x(元)之间的函数关系式为
(50≤x≤70)。
(2)∵乙种产品的销售单价在25元(含)到45元(含)之间,
∴
,之得45≤x≤65。
①当45≤x<50时,
,
∵﹣0.2<0,∴x>40时,W随x的增大而减小。
∴当x=45时,W有最大值,
(万元)。
②50≤x≤70时,
,
∵﹣0.1<0,∴x>40时,W随x的增大而减小。
当x=50时,W有最大值,
(万元)。
综上所述,当x=45,即甲、乙两种产品定价均为45元时,第一年的年销售利润最大,最大年销售利润是415万元。
(3)30≤m≤40。