分析 当点P在AF上时,由翻折的性质可求得PF=FC=4,然后再求得正方形的对角线AF的长,从而可得到PA的长;当点P在BE上时,由正方形的性质可知BP为AF的垂直平分线,则AP=PF,由翻折的性质可求得PF=FC=4,故此可得到AP的值.
解答 解:如图1所示:![]()
由翻折的性质可知PF=CF=4,
∵ABFE为正方形,边长为2,
∴AF=2$\sqrt{2}$.
∴PA=4-2$\sqrt{2}$.
如图2所示:![]()
由翻折的性质可知PF=FC=4.
∵ABFE为正方形,
∴BE为AF的垂直平分线.
∴AP=PF=4.
故答案为:4或4-2$\sqrt{2}$.
点评 本题主要考查的是翻折的性质、正方形的性质的应用,根据题意画出符合题意的图形是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | ∠1=∠2 | B. | S△OCE=S△OCD | C. | OD=CD | D. | OC垂直平分DE |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com