精英家教网 > 初中数学 > 题目详情

【题目】综合题。
(1)先化简,再求值:a(a﹣2b)+(a+b)2 , 其中a=﹣1,b=
(2)解方程: =

【答案】
(1)

解:a(a﹣2b)+(a+b)2

=a2﹣2ab+a2+2ab+b2

=2a2+b2

当a=﹣1,b= 时,原式= =2+2=4


(2)

解: =

方程两边同乘以x(x﹣2),得

x﹣2=3x

移项及合并同类项,得

2x=﹣2

系数化为1,得

x=﹣1,

经检验,x=﹣1是原分式方程的解,

故原分式方程的解是x=﹣1


【解析】(1)根据单项式乘多项式和完全平方公式可以化简题目中的式子,然后将a、b的值代入即可解答本题;(2)根据解分式方程的方法可以解答此方程,注意分式方程要检验.
【考点精析】解答此题的关键在于理解单项式乘多项式的相关知识,掌握单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:

与标准质量的差值(单位:千克)

1

4

2

3

2

8

(1)20筐白菜中,最重的一筐比最轻的一筐重______千克;

(2)与标准重量比较,20筐白菜总计超过或不足多少千克?

3)若白菜每千克售价元,则出售这20筐白菜可卖多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知 试说明BECF

完善下面的解答过程并填写理由或数学式

已知

AE (  )

(  )

已知

(  )

DCAB(  )

(  )

已知

(  )

BECF(  ) .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列分式方程:

(1)=; (2)-=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,D为等边△ABC的边AC上一点,E为直线AB上一点,CD=BE.

(1)如图1,求证;AD=DE;

(2)如图2,DE交CB于点P.

①若DE⊥AC,PC=6,求BP的长;

②猜想PD与PE之间的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线AB与x轴交于点B、与y轴交于点A,与反比例函数y= 的图象在第二象限交于C,CE⊥x轴,垂足为点E,tan∠ABO= ,OB=4,OE=2.

(1)求反比例函数的解析式;
(2)若点D是反比例函数图象在第四象限内的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF.如果SBAF=4SDFO , 求点D的坐标.
(3)若动点D在反比例函数图象的第四象限上运动,当线段DC与线段DB之差达到最大时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点DAB 的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.当一个点停止运动时时,另一个点也随之停止运动.设运动时间为t.

(1)用含有t的代数式表示CP.

(2)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;

(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列四个图形中,是轴对称图形的是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:
对于两人的作业,下列说法正确的是(
A.两人都对
B.两人都不对
C.甲对,乙不对
D.甲不对,乙对

查看答案和解析>>

同步练习册答案