分析 (1)先用等式的性质得出∠CAE=∠BAD,进而得出△ABD≌△ACE,有∠B=∠ACE,最后用等式的性质即可得出结论;
(2)①由(1)的结论即可得出α+β=180°;
②同(1)的方法即可得出结论.
解答 解:(1)∵∠DAE=∠BAC,∠BAC=∠BAD+∠DAC=∠EAC+∠DAC;
∴∠CAE=∠BAD;
在△ABD和△ACE中,$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end{array}\right.$
∴△ABD≌△ACE(SAS);
∴∠B=∠ACE;
∴∠BCE=∠BCA+∠ACE=∠BCA+∠B=180°-∠BAC=90°;
故答案为90°;
(2)①由(1)中可知β=180°-α,
∴α、β存在的数量关系为α+β=180°;
②当点D在射线BC上时,如图1,![]()
同(1)的方法即可得出,△ABD≌△ACE(SAS);
∴∠ABD=∠ACE,
∴β=∠BCE=∠ACB+∠ACE=∠ACB+∠ABD=180°-∠BAC=180°-α,
∴α+β=180°;
当点D在射线BC的反向延长线上时,如图2,![]()
同(1)的方法即可得出,△ABD≌△ACE(SAS);
∴∠ABD=∠ACE,
∴β=∠BCE=∠ACE-∠ACB=∠ABD-∠ACB=∠BAC=α,
∴α=β.
点评 此题是作图---复杂作图,主要考查了等式的性质,全等三角形的判定,解本题的关键是得出△ABD≌△ACE.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com