16£®ÒÑÖª£¬Ö±Ïßl1£ºy=-x+n¹ýµãA£¨-1£¬3£©£¬Ë«ÇúÏßC£ºy=$\frac{m}{x}$£¨x£¾0£©£¬¹ýµãB£¨1£¬2£©£¬¶¯Ö±Ïßl2£ºy=kx-2k+2£¨³£Êýk£¼0£©ºã¹ý¶¨µãF£®
£¨1£©ÇóÖ±Ïßl1£¬Ë«ÇúÏßCµÄ½âÎöʽ£¬¶¨µãFµÄ×ø±ê£»
£¨2£©ÔÚË«ÇúÏßCÉÏȡһµãP£¨x£¬y£©£¬¹ýP×÷xÖáµÄƽÐÐÏß½»Ö±Ïßl1ÓÚM£¬Á¬½ÓPF£®ÇóÖ¤£ºPF=PM£®
£¨3£©Èô¶¯Ö±Ïßl2ÓëË«ÇúÏßC½»ÓÚP1£¬P2Á½µã£¬Á¬½ÓOF½»Ö±Ïßl1ÓÚµãE£¬Á¬½ÓP1E£¬P2E£¬ÇóÖ¤£ºEFƽ·Ö¡ÏP1EP2£®

·ÖÎö £¨1£©ÓÉÖ±Ïßl1£ºy=-x+n¹ýµãA£¨-1£¬3£©£¬Ë«ÇúÏßC£ºy=$\frac{m}{x}$£¨x£¾0£©£¬¹ýµãB£¨1£¬2£©£¬ÀûÓôý¶¨ÏµÊý·¨¼´¿ÉÇóµÃÖ±Ïßl1£¬Ë«ÇúÏßCµÄ½âÎöʽ£»Óɶ¯Ö±Ïßl2£ºy=kx-2k+2£¬Åä·½·¨¿ÉÇóµÃ¶¨µãFµÄ×ø±ê£»
£¨2£©Ê×ÏÈÔÚË«ÇúÏßCÉÏÈÎȡһµãP£¨x£¬y£©£¬¹ýP×÷xÖáµÄƽÐÐÏß½»Ö±Ïßl1ÓÚM£¨x0£¬y£©£¬Á¬½ÓPF£®È»ºó·Ö±ðÇóµÃPMÓëPFµÄ³¤£¬¼Ì¶øÖ¤µÃ½áÂÛ£»
£¨3£©Ê×ÏȹýP1·Ö±ð×÷P1M1¡ÎxÖá½»l1ÓÚM1£¬×÷P1N1¡Íl1£¬´¹×ãΪN1£¬¹ýP2·Ö±ð×÷P2M2¡ÎxÖá½»l1ÓÚM2£¬×÷P2N2¡Íl1£¬´¹×ãΪN2£¬Ò×Ö¤µÃEF¡Íl1£¬¿ÉµÃP1N1¡ÎEF¡ÎP2N2£¬¼Ì¶øÖ¤µÃ¡÷P1N1E¡×¡÷P2N2E£¬È»ºóÓÉÏàËÆÈý½ÇÐεĶÔÓ¦½ÇÏàµÈ£¬Ö¤µÃ½áÂÛ£®

½â´ð £¨1£©½â£º¡ßÖ±Ïßl1£ºy=-x+n¹ýµãA£¨-1£¬3£©£¬
¡à-£¨-1£©+n=3£¬
½âµÃ£ºn=2£¬
¡àÖ±Ïßl1µÄ½âÎöʽΪ£ºy=-x+2£¬
¡ßË«ÇúÏßC£ºy=$\frac{m}{x}$£¨x£¾0£©¹ýµãB£¨1£¬2£©£¬
¡àm=xy=1¡Á2=2£¬
¼´Ë«ÇúÏßCµÄ½âÎöʽΪ£ºy=$\frac{2}{x}$£¬
¡ß¶¯Ö±Ïßl2£ºy=kx-2k+2=k£¨x-2£©+2£¬
¡à²»ÂÛkΪÈκθºÊýʱ£¬µ±x=2ʱ£¬Ôòy=2£¬
¼´¶¯Ö±Ïßl2£ºy=kx-2k+2ºã¹ý¶¨µãF£¨2£¬2£©£»

£¨2£©Ö¤Ã÷£ºÈçͼ1£¬ÔÚË«ÇúÏßCÉÏÈÎȡһµãP£¨x£¬y£©£¬¹ýP×÷xÖáµÄƽÐÐÏß½»Ö±Ïßl1ÓÚM£¨x0£¬y£©£¬Á¬½ÓPF£®
ÔòPF=x-x0£¬
ÓÖ¡ßM£¨x0£¬y£©ÔÚÖ±Ïßl1ÉÏ£¬
¡à-x0+2=y£¬
¡àx0=2-y=2-$\frac{2}{x}$£¬
¡àPM=x+$\frac{2}{x}$-2£¬
ÓÖ¡ßPF=$\sqrt{£¨x-2£©^{2}+£¨y-2£©^{2}}$=$\sqrt{£¨x-2£©^{2}+£¨\frac{2}{x}-2£©^{2}}$=$\sqrt{£¨x+\frac{2}{x}£©^{2}-4£¨x+\frac{2}{x}£©+4}$=$\sqrt{£¨x+\frac{2}{x}-2£©^{2}}$=x+$\frac{2}{x}$-2£»
£¨×¢£ºx+$\frac{2}{x}$-2=£¨$\sqrt{x}$£©2+£¨$\sqrt{\frac{2}{x}}$£©2-2$\sqrt{x}$•$\sqrt{\frac{2}{x}}$+2$\sqrt{2}$-2=£¨$\sqrt{x}$-$\sqrt{\frac{2}{x}}$£©2+2$\sqrt{2}$-2=£¨$\sqrt{x}$-$\sqrt{\frac{2}{x}}$£©2+2£¨$\sqrt{2}$-1£©¡Ý2£¨$\sqrt{2}$-1£©£¾0£©
¡àPM=PF£»

£¨3£©Ö¤Ã÷£ºÈçͼ2£¬¹ýP1·Ö±ð×÷P1M1¡ÎxÖá½»l1ÓÚM1£¬×÷P1N1¡Íl1£¬´¹×ãΪN1£¬¹ýP2·Ö±ð×÷P2M2¡ÎxÖá½»l1ÓÚM2£¬×÷P2N2¡Íl1£¬´¹×ãΪN2£¬
¡ßÖ±Ïßl1µÄ½âÎöʽΪy=-x+2£¬
¡à¡÷P1M1N1ºÍ¡÷P2M2N2¶¼ÊǵÈÑüÖ±½ÇÈý½ÇÐΣ®
¡àP1N1=$\frac{\sqrt{2}}{2}$P1M1=$\frac{\sqrt{2}}{2}$P1F£¬P2N2=$\frac{\sqrt{2}}{2}$P2M2=$\frac{\sqrt{2}}{2}$P2F£¬
¡ßÖ±ÏßEFµÄ½âÎöΪ£ºy=x£¬
¡àEF¡Íl1£¬
¡àP1N1¡ÎEF¡ÎP2N2£¬
¡à$\frac{{N}_{1}E}{E{N}_{2}}=\frac{{P}_{1}F}{F{P}_{2}}$=$\frac{\sqrt{2}{P}_{1}{N}_{1}}{\sqrt{2}{P}_{2}{N}_{2}}$=$\frac{{P}_{1}{N}_{1}}{{P}_{2}{N}_{2}}$£¬
¼´$\frac{{N}_{1}E}{E{N}_{2}}$=$\frac{{P}_{1}{N}_{1}}{{P}_{2}{N}_{2}}$£¬
¡à¡÷P1N1E¡×¡÷P2N2E£¬
¡à¡ÏP1EN1=¡ÏP2EN2£¬
¡ß¡ÏP1EF=90¡ã-¡ÏP1EN1£¬¡ÏP2EF=90¡ã-¡ÏP2EN2£¬
¡à¡ÏP1EF=¡ÏP2EF£¬
¡àEFƽ·Ö¡ÏP1EP2£®

µãÆÀ ´ËÌâÊôÓÚ·´±ÈÀýº¯Êý×ÛºÏÌ⣮¿¼²éÁË´ý¶¨ÏµÊýÇóº¯Êý½âÎöʽ¡¢¹´¹É¶¨Àí¡¢µÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖÊÒÔ¼°ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£®×¢Òâ׼ȷ×÷³ö¸¨ÖúÏßÊǽâ´ËÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖª·½³Ì×é$\left\{\begin{array}{l}{x+ay=2}\\{5x-2y=3}\end{array}\right.$µÄ½âÒ²ÊǶþÔªÒ»´Î·½³Ìx-y=1µÄÒ»¸ö½â£¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖª¹ØÓÚx¡¢yµÄ·½³Ì×é$\left\{\begin{array}{l}{x-y=a+4}\\{3x+y=7a}\end{array}\right.$µÄ½âÂú×ãx£¾y£¾0£®
£¨1£©ÇóaµÄȡֵ·¶Î§£®
£¨2£©»¯¼ò|a|-|3-a|£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Èçͼ£¬ÓÉ¡Ï1=¡Ï2µÃµ½AB¡ÎCDµÄÀíÓÉÊÇ£¨¡¡¡¡£©
A£®Á½Ö±Ï߯½ÐУ¬Í¬Î»½ÇÏàµÈB£®Á½Ö±Ï߯½ÐУ¬ÄÚ´í½ÇÏàµÈ
C£®Í¬Î»½ÇÏàµÈ£¬Á½Ö±Ï߯½ÐÐD£®ÄÚ´í½ÇÏàµÈ£¬Á½Ö±Ï߯½ÐÐ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èçͼ£ºÅ×ÎïÏßy=x2-2x-3ÓëxÖá½»ÓÚA£¬BÁ½µã£¬ÓëyÖá½»ÓÚµãC£¬µãC¹ØÓÚ¶Ô³ÆÖáµÄ¶Ô³ÆµãΪµãD£¬Ö±ÏßLÓëÅ×ÎïÏß½»ÓÚµãA£¬DÁ½µã£®
£¨1£©ÇóA£¬DÁ½µãµÄ×ø±ê£®
£¨2£©PÊÇÏß¶ÎADÉÏÒ»¸ö¶¯µã£¬¹ýP×öyÖáµÄƽÐÐÏß½»Å×ÎïÏßÓÚµãE£¬ÇóÏß¶ÎPE³¤¶È×î´óÖµ£®
£¨3£©µãMÊÇÅ×ÎïÏßÉϵ͝µã£¬ÔÚxÖáÉÏÊÇ·ñ´æÔÚµãN£¬Ê¹ÒÔA£¬D£¬M£¬NΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ®Ö±½Óд³öËùÓÐÂú×ãÌõ¼þµÄNµã×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ£¬¡÷ABCµÄ¶¥µã×ø±ê·Ö±ðΪ£¨4£¬1£©£¬B£¨6£¬1£©£¬C£¨7£¬5£©
£¨1£©Çó³ö¡÷ABCµÄÃæ»ý£»
£¨2£©ÏȽ«¡÷ABCÏòÏÂÆ½ÒÆ1¸öµ¥Î»£¬ÔÙÏò×óÆ½ÒÆ6¸öµ¥Î»µÃµ½¡÷A1B1C1£¬»­³ö¡÷A1B1C1²¢Ð´³öA1B1C1µÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬Å×ÎïÏßy=ax2-2ax-4½»xÖáµÄÕý°ëÖáÓÚµãA£¬½»yÖáÓÚµãB£¬ÇÒOA=OB£®
£¨1£©Çó¸ÃÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÈôµãMΪABµÄÖе㣬ÇÒ¡ÏPMQ=45¡ã£¬¡ÏPMQÔÚABµÄͬ²à£¬ÒÔµãMΪÐýתÖÐÐĽ«¡ÏPMQÐýת£¬MP½»yÖáÓÚµãC£¬MQ½»xÖáÓÚµãD£®ÉèAD=m£¨m£¾0£©£¬BC=n£¬ÇónÓëmÖ®¼äµÄº¯Êý¹ØÏµÊ½£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬µ±¡ÏPMQµÄÒ»±ßÇ¡ºÃ¾­¹ý¸ÃÅ×ÎïÏßÓëxÖáµÄÁíÒ»¸ö½»µãʱ£¬Ö±½Óд³ö¡ÏPMQµÄÁíÒ»±ßÓëxÖáµÄ½»µã×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®?ABCDÖУ¬Öܳ¤Îª20cm£¬¶Ô½ÇÏßAC½»BDÓÚµãO£¬¡÷OAB±È¡÷OBCµÄÖܳ¤¶à4£¬Ôò±ßAB=7cm£¬BC=3cm£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÎªÁ˽âһ·¶Î³µÁ¾ÐÐÊ»ËٶȵÄÇé¿ö£¬½»¾¯Í³¼ÆÁ˸÷¶ÎÉÏÎç7£º00ÖÁ9£º00À´Íù³µÁ¾µÄ³µËÙ£¨µ¥Î»£ºÇ§Ã×/ʱ£©£¬²¢»æÖƳÉÈçͼËùʾµÄÌõÐÎͳ¼ÆÍ¼£®ÕâЩ³µËÙµÄÖÚÊýÊÇ70ǧÃ×/ʱ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸