·ÖÎö £¨1£©ÓÉÖ±Ïßl1£ºy=-x+n¹ýµãA£¨-1£¬3£©£¬Ë«ÇúÏßC£ºy=$\frac{m}{x}$£¨x£¾0£©£¬¹ýµãB£¨1£¬2£©£¬ÀûÓôý¶¨ÏµÊý·¨¼´¿ÉÇóµÃÖ±Ïßl1£¬Ë«ÇúÏßCµÄ½âÎöʽ£»Óɶ¯Ö±Ïßl2£ºy=kx-2k+2£¬Åä·½·¨¿ÉÇóµÃ¶¨µãFµÄ×ø±ê£»
£¨2£©Ê×ÏÈÔÚË«ÇúÏßCÉÏÈÎȡһµãP£¨x£¬y£©£¬¹ýP×÷xÖáµÄƽÐÐÏß½»Ö±Ïßl1ÓÚM£¨x0£¬y£©£¬Á¬½ÓPF£®È»ºó·Ö±ðÇóµÃPMÓëPFµÄ³¤£¬¼Ì¶øÖ¤µÃ½áÂÛ£»
£¨3£©Ê×ÏȹýP1·Ö±ð×÷P1M1¡ÎxÖá½»l1ÓÚM1£¬×÷P1N1¡Íl1£¬´¹×ãΪN1£¬¹ýP2·Ö±ð×÷P2M2¡ÎxÖá½»l1ÓÚM2£¬×÷P2N2¡Íl1£¬´¹×ãΪN2£¬Ò×Ö¤µÃEF¡Íl1£¬¿ÉµÃP1N1¡ÎEF¡ÎP2N2£¬¼Ì¶øÖ¤µÃ¡÷P1N1E¡×¡÷P2N2E£¬È»ºóÓÉÏàËÆÈý½ÇÐεĶÔÓ¦½ÇÏàµÈ£¬Ö¤µÃ½áÂÛ£®
½â´ð £¨1£©½â£º¡ßÖ±Ïßl1£ºy=-x+n¹ýµãA£¨-1£¬3£©£¬
¡à-£¨-1£©+n=3£¬
½âµÃ£ºn=2£¬
¡àÖ±Ïßl1µÄ½âÎöʽΪ£ºy=-x+2£¬
¡ßË«ÇúÏßC£ºy=$\frac{m}{x}$£¨x£¾0£©¹ýµãB£¨1£¬2£©£¬
¡àm=xy=1¡Á2=2£¬![]()
¼´Ë«ÇúÏßCµÄ½âÎöʽΪ£ºy=$\frac{2}{x}$£¬
¡ß¶¯Ö±Ïßl2£ºy=kx-2k+2=k£¨x-2£©+2£¬
¡à²»ÂÛkΪÈκθºÊýʱ£¬µ±x=2ʱ£¬Ôòy=2£¬
¼´¶¯Ö±Ïßl2£ºy=kx-2k+2ºã¹ý¶¨µãF£¨2£¬2£©£»
£¨2£©Ö¤Ã÷£ºÈçͼ1£¬ÔÚË«ÇúÏßCÉÏÈÎȡһµãP£¨x£¬y£©£¬¹ýP×÷xÖáµÄƽÐÐÏß½»Ö±Ïßl1ÓÚM£¨x0£¬y£©£¬Á¬½ÓPF£®
ÔòPF=x-x0£¬
ÓÖ¡ßM£¨x0£¬y£©ÔÚÖ±Ïßl1ÉÏ£¬
¡à-x0+2=y£¬
¡àx0=2-y=2-$\frac{2}{x}$£¬
¡àPM=x+$\frac{2}{x}$-2£¬
ÓÖ¡ßPF=$\sqrt{£¨x-2£©^{2}+£¨y-2£©^{2}}$=$\sqrt{£¨x-2£©^{2}+£¨\frac{2}{x}-2£©^{2}}$=$\sqrt{£¨x+\frac{2}{x}£©^{2}-4£¨x+\frac{2}{x}£©+4}$=$\sqrt{£¨x+\frac{2}{x}-2£©^{2}}$=x+$\frac{2}{x}$-2£»
£¨×¢£ºx+$\frac{2}{x}$-2=£¨$\sqrt{x}$£©2+£¨$\sqrt{\frac{2}{x}}$£©2-2$\sqrt{x}$•$\sqrt{\frac{2}{x}}$+2$\sqrt{2}$-2=£¨$\sqrt{x}$-$\sqrt{\frac{2}{x}}$£©2+2$\sqrt{2}$-2=£¨$\sqrt{x}$-$\sqrt{\frac{2}{x}}$£©2+2£¨$\sqrt{2}$-1£©¡Ý2£¨$\sqrt{2}$-1£©£¾0£©
¡àPM=PF£»
£¨3£©Ö¤Ã÷£ºÈçͼ2£¬¹ýP1·Ö±ð×÷P1M1¡ÎxÖá½»l1ÓÚM1£¬×÷P1N1¡Íl1£¬´¹×ãΪN1£¬¹ýP2·Ö±ð×÷P2M2¡ÎxÖá½»l1ÓÚM2£¬×÷P2N2¡Íl1£¬´¹×ãΪN2£¬
¡ßÖ±Ïßl1µÄ½âÎöʽΪy=-x+2£¬
¡à¡÷P1M1N1ºÍ¡÷P2M2N2¶¼ÊǵÈÑüÖ±½ÇÈý½ÇÐΣ®
¡àP1N1=$\frac{\sqrt{2}}{2}$P1M1=$\frac{\sqrt{2}}{2}$P1F£¬P2N2=$\frac{\sqrt{2}}{2}$P2M2=$\frac{\sqrt{2}}{2}$P2F£¬
¡ßÖ±ÏßEFµÄ½âÎöΪ£ºy=x£¬
¡àEF¡Íl1£¬
¡àP1N1¡ÎEF¡ÎP2N2£¬
¡à$\frac{{N}_{1}E}{E{N}_{2}}=\frac{{P}_{1}F}{F{P}_{2}}$=$\frac{\sqrt{2}{P}_{1}{N}_{1}}{\sqrt{2}{P}_{2}{N}_{2}}$=$\frac{{P}_{1}{N}_{1}}{{P}_{2}{N}_{2}}$£¬
¼´$\frac{{N}_{1}E}{E{N}_{2}}$=$\frac{{P}_{1}{N}_{1}}{{P}_{2}{N}_{2}}$£¬
¡à¡÷P1N1E¡×¡÷P2N2E£¬
¡à¡ÏP1EN1=¡ÏP2EN2£¬
¡ß¡ÏP1EF=90¡ã-¡ÏP1EN1£¬¡ÏP2EF=90¡ã-¡ÏP2EN2£¬
¡à¡ÏP1EF=¡ÏP2EF£¬
¡àEFƽ·Ö¡ÏP1EP2£®
µãÆÀ ´ËÌâÊôÓÚ·´±ÈÀýº¯Êý×ÛºÏÌ⣮¿¼²éÁË´ý¶¨ÏµÊýÇóº¯Êý½âÎöʽ¡¢¹´¹É¶¨Àí¡¢µÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖÊÒÔ¼°ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£®×¢Òâ׼ȷ×÷³ö¸¨ÖúÏßÊǽâ´ËÌâµÄ¹Ø¼ü£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | Á½Ö±Ï߯½ÐУ¬Í¬Î»½ÇÏàµÈ | B£® | Á½Ö±Ï߯½ÐУ¬ÄÚ´í½ÇÏàµÈ | ||
| C£® | ͬλ½ÇÏàµÈ£¬Á½Ö±Ï߯½ÐÐ | D£® | ÄÚ´í½ÇÏàµÈ£¬Á½Ö±Ï߯½ÐÐ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com