【题目】如图1~4,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,依此类推,图10中有10个直角三角形的内切圆,它们的面积分别记为S1,S2,S3,…,S10,则S1+S2+S3+…+S10= .
【答案】.
【解析】
试题分析:(1)如图1,过点O做OE⊥AC,OF⊥BC,垂足为E、F,则∠OEC=∠OFC=90°,∵∠C=90°,∴四边形OECF为矩形.∵OE=OF,∴矩形OECF为正方形.设圆O的半径为r,则OE=OF=r,AD=AE=3﹣r,BD=4﹣r.∴3﹣r+4+r=5,∴S1=π×12=π; (2)图2,由S△ABC=,∴CD=.
在Rt△ACD中:,∴ .由(1)得:⊙O的半径为 ,⊙E的半径为.∴.
(3)图3,由S△CDB=,∴.∴ ,.由(1)得:⊙O的半径=,:⊙E的半径=,:⊙F的半径=.∴S1+S2+S3=π.同理可得S1+S2+S3+S4=.则S1+S2+S3+…+S10=π.
科目:初中数学 来源: 题型:
【题目】如图1,△ABC是等腰直角三角形,∠BAC= 90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.
(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.
(2)当△ABC绕点A逆时针旋转45°时,如图3,延长DB交CF于点H.
①求证:BD⊥CF;
②当AB=2,AD=3时,求线段DH的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标中,△ABC三个顶点坐标为A(﹣,0)、B(,0)、C(0,3).
(1)求△ABC内切圆⊙D的半径.
(2)过点E(0,﹣1)的直线与⊙D相切于点F(点F在第一象限),求直线EF的解析式.
(3)以(2)为条件,P为直线EF上一点,以P为圆心,以2为半径作⊙P.若⊙P上存在一点到△ABC三个顶点的距离相等,求此时圆心P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB=6,BC=8,CD=24,AD=26,∠B=90°,以AD为直径作圆O,过点D作DE∥AB交圆O于点E
(1)证明点C在圆O上;
(2)求tan∠CDE的值;
(3)求圆心O到弦ED的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com