精英家教网 > 初中数学 > 题目详情
如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.
(1)请用直尺和圆规画一个“好玩三角形”;
(2)如图在Rt△ABC中,∠C=90°,tanA=,求证:△ABC是“好玩三角形”;
(3))如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB-BC和AD-DC向终点C运动,记点P经过的路程为s.
①当β=45°时,若△APQ是“好玩三角形”,试求的值;
②当tanβ的取值在什么范围内,点P,Q在运动过程中,有且只有一个△APQ能成为“好玩三角形”.请直接写出tanβ的取值范围.
(4)(本小题为选做题,作对另加2分,但全卷满分不超过150分)
依据(3)的条件,提出一个关于“在点P,Q的运动过程中,tanβ的取值范围与△APQ是‘好玩三角形’的个数关系”的真命题(“好玩三角形”的个数限定不能为1)

【答案】分析:(1)先画一条线段AB,再确定AB的中点O,过点O作一条线段OC使OC=AB,连接AC、BC,则△ABC是所求作的三角形;
(2)取AC的中点D,连接BD,设BC=x,根据条件可以求出AC=2x,由三角函数可以求出BD=2x,从而得出AC=BC,从而得出结论;
(3)①当β=45°时,分情况讨论,P点在AB上时,△APQ是等腰直角三角形,不可能是“好玩三角形”,当P在BC上时,延长AB交QP的延长线于点F,可以求出分情况讨论,就可以求出,再分情况讨论就可以求出当AE=PQ时,的值,当AP=QM时,可以求出的值;
②根据①求出的两个的值就可以求出tanβ的取值范围;
(4)由(3)可以得出0<tanβ<,△APQ为“好玩三角形”的个数为2就是真命题.
解答:解:(1)如图1,①作一条线段AB,
②作线段AB的中点O,
③作线段OC,使OC=AB,
④连接AC、BC,
∴△ABC是所求作的三角形.

(2)如图2,取AC的中点D,连接BD
∵∠C=90°,tanA=

∴设BC=x,则AC=2x,
∵D是AC的中点,
∴CD=AC=x
∴BD===2x,
∴AC=BD
∴△ABC是“好玩三角形”;

(3)①如图3,当β=45°,点P在AB上时,
∴∠ABC=2β=90°,
∴△APQ是等腰直角三角形,不可能是“好玩三角形”,
当P在BC上时,连接AC交PQ于点E,延长AB交QP的延长线于点F,
∵PC=CQ,
∴∠CAB=∠ACP,∠AEF=∠CEP,
∴△AEF∽△CEP,

∵PE=CE,

Ⅰ当底边PQ与它的中线AE相等时,即AE=PQ时,


Ⅱ当腰AP与它的中线QM相等,即AP=QM时,
作QN⊥AP于N,如图4
∴MN=AN=MP.
∴QN=MN,
∴tan∠APQ=
∴tan∠APE===
=
②由①可知,当AE=PQ和AP=QM时,有且只有一个△APQ能成为“好玩三角形”,
<tanβ<2时,有且只有一个△APQ能成为“好玩三角形”.

(4)由(3)可以知道0<tanβ<
则在P、Q的运动过程中,使得△APQ成为“好玩三角形”的个数为2.
点评:本题是一道相似形综合运用的试题,考查了相似三角形的判定及性质的运用,勾股定理的运用,等腰直角三角形的性质的运用,等腰三角形的性质的运用,锐角三角形函数值的运用,解答时灵活运用三角函数值建立方程求解是解答的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•台州)如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.
(1)请用直尺和圆规画一个“好玩三角形”;
(2)如图在Rt△ABC中,∠C=90°,tanA=
3
2
,求证:△ABC是“好玩三角形”;
(3)如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB-BC和AD-DC向终点C运动,记点P经过的路程为s.
①当β=45°时,若△APQ是“好玩三角形”,试求
a
s
的值;
②当tanβ的取值在什么范围内,点P,Q在运动过程中,有且只有一个△APQ能成为“好玩三角形”.请直接写出tanβ的取值范围.
(4)(本小题为选做题,作对另加2分,但全卷满分不超过150分)
依据(3)的条件,提出一个关于“在点P,Q的运动过程中,tanβ的取值范围与△APQ是‘好玩三角形’的个数关系”的真命题(“好玩三角形”的个数限定不能为1)

查看答案和解析>>

科目:初中数学 来源:2013年浙江省台州市高级中等学校招生考试数学 题型:044

如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”

(1)请用直尺与圆规画一个“好玩三角形”;

(2)如图1,在Rt△ABC中,∠C=90°,,求证:△ABC是“好玩三角形”;

(3)如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同的速度分别沿折线AB-BC和AD-DC向终点C运动,记点P所经过的路程为S

①当β=45°时,若△APQ是“好玩三角形”,试求的值

②当tanβ的取值在什么范围内,点P,Q在运动过程中,有且只有一个△APQ能成为“好玩三角形”请直接写出tanβ的取值范围.

(4)本小题为选做题

依据(3)中的条件,提出一个关于“在点P,Q的运动过程中,tanβ的取值范围与△APQ是“好玩三角形”的个数关系的真命题(“好玩三角形”的个数限定不能为1).

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(浙江台州卷)数学(带解析) 题型:解答题

如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”

(1)请用直尺与圆规画一个“好玩三角形”;
(2)如图1,在Rt△ABC中,∠C=90°,,求证:△ABC是“好玩三角形”;
(3)如图2,已知菱形ABCD的边长为a, ∠ABC=2β,点P,Q从点A同时出发,以相同的速度分别沿折线AB-BC和AD-DC向终点C运动,记点P所经过的路程为s
①当β=45°时,若△APQ是“好玩三角形”,试求的值;
②当tanβ的取值在什么范围内,点P,Q在运动过程中,有且只有一个△APQ能成为“好玩三角形”?请直接写出tanβ的取值范围。
(4)本小题为选做题
依据(3)中的条件,提出一个关于“在点P,Q的运动过程中,tanβ的取值范围与△APQ是“好玩三角形”的个数关系”的真命题(“好玩三角形”的个数限定不能为1)。

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(浙江台州卷)数学(解析版) 题型:解答题

如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”

(1)请用直尺与圆规画一个“好玩三角形”;

(2)如图1,在Rt△ABC中,∠C=90°,,求证:△ABC是“好玩三角形”;

(3)如图2,已知菱形ABCD的边长为a, ∠ABC=2β,点P,Q从点A同时出发,以相同的速度分别沿折线AB-BC和AD-DC向终点C运动,记点P所经过的路程为s

①当β=45°时,若△APQ是“好玩三角形”,试求的值;

②当tanβ的取值在什么范围内,点P,Q在运动过程中,有且只有一个△APQ能成为“好玩三角形”?请直接写出tanβ的取值范围。

(4)本小题为选做题

依据(3)中的条件,提出一个关于“在点P,Q的运动过程中,tanβ的取值范围与△APQ是“好玩三角形”的个数关系”的真命题(“好玩三角形”的个数限定不能为1)。

 

查看答案和解析>>

同步练习册答案