精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,在中,.点从点开始沿边向点的速度移动,同时点从点开始沿边向点的速度移动.当一个点到达终点时另一点也随之停止运动,设运动时间为秒,

求几秒后,的面积等于

求几秒后,的长度等于

运动过程中,的面积能否等于?说明理由.

【答案】(1)秒后的面积等于;(2)时,的长度等于;(3)的面积不能等于

【解析】

(1)设经过x秒钟,△PBQ的面积等于6平方厘米,根据点PA点开始沿AB边向点B1cm/s的速度移动,点QB点开始沿BC边向点C2cm/s的速度移动,表示出BPBQ的长可列方程求解.
(2)根据PQ=5,利用勾股定理BP2+BQ2=PQ2,求出即可;
(3)通过判定得到的方程的根的判别式即可判定能否达到8cm2

(1)经过x秒以后△PBQ面积为6

×(5x)×2x=6

整理得:x25x+6=0

解得:x=2x=3

答:23秒后△PBQ的面积等于6cm2.

时,在中,

时,的长度等于

设经过秒以后面积为

整理得:

的面积不能等于

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,前2分钟其速度v(米/分)与时间t(分)满足二次函数v=at2,后三分钟其速度v(米/分)与时间t(分)满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分,求:

(1)二次函数和反比例函数的关系式.

(2)弹珠在轨道上行驶的最大速度.

【答案】(1)v=(2<t≤5) (2)8米/分

【解析】分析:(1)由图象可知前一分钟过点(1,2),后三分钟时过点(2,8),分别利用待定系数法可求得函数解析式;

(2)把t=2代入(1)中二次函数解析式即可.

详解:(1)v=at2的图象经过点(1,2),

a=2.

∴二次函数的解析式为:v=2t2,(0≤t≤2);

设反比例函数的解析式为v=

由题意知,图象经过点(2,8),

k=16,

∴反比例函数的解析式为v=(2<t≤5);

(2)∵二次函数v=2t2,(0≤t≤2)的图象开口向上,对称轴为y轴,

∴弹珠在轨道上行驶的最大速度在2秒末,为8/分.

点睛:本题考查了反比例函数和二次函数的应用.解题的关键是从图中得到关键性的信息:自变量的取值范围和图象所经过的点的坐标.

型】解答
束】
24

【题目】阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.

(1)在图1中证明小胖的发现;

借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:

(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;

(3)如图3,在ABC中,AB=AC,BAC=m°,点E为ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求EAF的度数(用含有m的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.

(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果.

(2)求取出的两张卡片上的数字之和为偶数的概率P.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,对角线相交于点,将直线绕点顺时针旋转一个角度),分别交线段于点,已知,连接.

1)如图①,在旋转的过程中,请写出线段的数量关系,并证明;

2)如图②,当时,请写出线段的数量关系,并证明;

3)如图③,当时,求的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某西瓜经营户以/千克的价格购进一批小型西瓜,以/千克的价格出售,每天可售出千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价/千克,每天可多售出千克.另外,每天的房租等固定成本共元.该经营户要想每天盈利元,应将每千克小型西瓜的售价降低________元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.

求甲、乙两种商品的每件进价;

该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人分别从AB两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示.有下列说法:

AB之间的距离为1200m; 乙行走的速度是甲的1.5倍;b=960; ④ a=34.

以上结论正确的有(  )

A. ①② B. ①②③ C. ①③④ D. ①②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数.

(1)确定调查方式时,甲同学说:“我到六年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到六年级每个班随机调查一定数量的同学”.请指出哪位同学的调查方式最合理.

类别

频数(人数)

频率

武术类

0.25

书画类

20

0.20

棋牌类

15

b

器乐类

合计

a

1.00

(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图.

请你根据以上图表提供的信息解答下列问题:

①a=_____,b=_____

②在扇形统计图中,器乐类所对应扇形的圆心角的度数是_____

③若该校六年级有学生560人,请你估计大约有多少学生参加武术类校本课程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知ABC的三个顶点的坐标分别为A(1,0),B(2,﹣3),C(4,﹣2).

(1)画出ABC关于x轴的对称图形A1B1C1

(2)画出A1B1C1向左平移3个单位长度后得到的A2B2C2

(3)如果AC上有一点P(m,n)经过上述两次变换,那么对应A2C2上的点P2的坐标是   

查看答案和解析>>

同步练习册答案