精英家教网 > 初中数学 > 题目详情
如图,已知C、D是双曲线y=
m
x
在第一象限内的分支上的两点,直线CD分别交x轴,y轴于A、B两点,过点C作CG⊥x轴于点G,设C、D的坐标分别为(x1,y1),(x2,y2),连结OC、OD.
(1)求证:y1<OC<y1+
m
y1

(2)若OC=
10
x1
y1
=
y2
x2
=
1
3
,求直线CD的解析式.
分析:(1)将三个部分在图上的对应线段理顺就一目了然:直角三角形中斜边大于直角边;三角形两边之和大于第三边.
(2)设x1=a,则y1=3a,在Rt△OCG中,利用勾股定理可得出a的值,继而求出点C的坐标,代入反比例函数解析式求出m,再由
y2
x2
=
1
3
可求出点D的坐标,利用待定系数法可确定直线CD的解析式.
解答:解:(1)∵点C(x1,y1)在双曲线y=
m
x
上,
∴x1=
m
y1

∵在Rt△OCG中,CG<OC<CG+OG,
∴y1<OC<y1+
m
y1


(2)设x1=a,则y1=3a,
在Rt△OCG中,OG2+CG2=OC2,即10a2=10,
解得:a1=1,a2=-1(点C在第一象限,故舍去),
∴点C的坐标为(1,3),
将点C的坐标代入反比例函数解析式可得:3=
m
1

解得:m=3,
∴反比例函数解析式为:y=
3
x

设x2=3b,则y2=b,
即点D的坐标为(3b,b),代入反比例函数解析式可得:b=
3
3b

解得:b1=1,b2=-1(点D在第一象限,故舍去),
∴点D的坐标为(3,1),
设直线CD的解析式为:y=kx+b,
将点C(1,3),点D(3,1)代入可得:
k+b=3
3k+b=1

解得:
k=-1
b=4

故直线CD的解析式为:y=-x+4.
点评:本题考查了反比例函数的综合,涉及了待定系数法求函数解析式、三角形的三边关系及勾股定理的知识,解答本题的关键是熟练掌握基础知识,掌握数形结合思想的运算,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1是一种带有黑白双色、边长是20 cm的正方形装饰瓷砖,用这样的四块瓷砖可以拼成如图2的图案.已知制作图1这样的瓷砖,其黑、白两部分所用材料的成本分别为0.02元/cm2和0.01元/cm2,那么制作这样一块瓷砖所用黑白材料的精英家教网最低成本是
 
元.(π取3.14,结果精确到0.01元)

查看答案和解析>>

科目:初中数学 来源: 题型:

在某市开展的环境保护宣传周中,某校学生会就“你赞同停止使用一次性筷子吗?”这个问题对该校学生进行抽样调查,并根据调查结果绘制出如图所示的两幅统计图.请你根据图中信息解答下列问题:

(1)共调查了
200
200
名学生;回答“不赞同”的人数占调查总人数的百分比是
5%
5%

(2)请将图1中空缺的部分补充完整.
(3)已知一棵生长了20年的大树大约能制成5000双一次性筷子,如果每人每天用一双一次性筷子,请你估计一个1000万人口的城市1年(365天计算)要“用掉”多少棵这样的大树.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,某隧道口的横截面是抛物线形,已知路宽AB为6米,最高点离地面的距离OC为5米.以最高点O为坐标原点,抛物线的对称轴为y轴,1米为数轴的单位长度,建立平面直角坐标系.求:
(1)以这一部分抛物线为图象的函数解析式,并写出x的取值范围.
(2)有一辆宽2米,高2.5米的农用货车(货物最高处与地面AB的距离)能否通过此隧道?
(3)如果该隧道内设双行道,为了安全起见,在隧道正中间设有0.2m宽的隔离带,则该农用货车还能通过隧道吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

著名数学教育家G.波利亚,有句名言:“发现问题比解决问题更重要”,这句话启发我们:要想学好数学,就需要观察,发现问题,探索问题的规律性东西,要有一双敏锐的眼睛.请先观察、计算再填空.
已知:如图,OM平分∠AOB,ON平分∠BOC.
(1)当∠AOC=90°,∠BOC=70°时,∠MON=
45°
45°

(2)当∠AOC=80°,∠BOC=60°时,∠MON=
40°
40°

(3)当∠AOC=70°,∠BOC=50°时,∠MON=
35°
35°

(4)猜想:不论∠AOC和∠BOC的度数是多少,∠MON的度数总等于
∠AOC
∠AOC
度数的一半.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,某隧道口的横截面是抛物线形,已知路宽AB为6米,最高点离地面的距离OC为5米.以最高点O为坐标原点,抛物线的对称轴为y轴,1米为数轴的单位长度,建立平面直角坐标系.求:
(1)以这一部分抛物线为图象的函数解析式,并写出x的取值范围.
(2)有一辆宽2米,高2.5米的农用货车(货物最高处与地面AB的距离)能否通过此隧道?
(3)如果该隧道内设双行道,为了安全起见,在隧道正中间设有0.2m宽的隔离带,则该农用货车还能通过隧道吗?

查看答案和解析>>

同步练习册答案