精英家教网 > 初中数学 > 题目详情
如图,以正方形ABCD的边BC为直径作半圆O,过点D作直线切半圆于点F,交AB边于点E,求△ADE和直角梯形EBCD周长之比.
分析:设EF=x,DF=y,在△ADE中根据勾股定理可得列方程,从而得到三角形ADE的周长和直角梯形EBCD周长,从而可求得两者周长之比.
解答:解:根据切线长定理得,BE=EF,DF=DC=AD=AB=BC.
设EF=x,DF=y,
则在直角△AED中,AE=y-x,AD=CD=y,DE=x+y.
根据勾股定理可得:
(y-x)2+y2=(x+y)2
∴y=4x,
∴三角形ADE的周长为12x,直角梯形EBCD周长为14x,
∴两者周长之比为12x:14x=6:7,
故△ADE和直角梯形EBCD周长之比为6:7.
点评:此题考查圆的切线长定理,正方形的性质和勾股定理等知识,解答本题关键是运用切线长定理得出EB=EF,DF=DC,从而求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、如图,以直角△ABC的三边向外作正方形,其面积分别为S1,S2,S3且S1=4,S2=8,则S3=
12

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6
2
,那么AC的长等于
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以Rt△ABC的斜边BC为一边作正方形BCDE,设正方形的中心为O,连接AO,如果AB=3,AO=2
2
,那么AC的长等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以Rt△ABC的斜边和一直角边为边长向外作正方形,面积分别为169和25,则另一直角边的长度BC为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以Rt△ABC各边为边长的正方形面积分别为S1、S2、S3,且S1+S2+S3=50,则AB=(  )

查看答案和解析>>

同步练习册答案